

Displaying distributions

Hadley Wickham

1. The diamonds data

- 2. Histograms and bar charts
- 3. Scatterplots for big data

Diamonds

Diamonds data

~**54,000** round diamonds from <u>http://www.diamondse.info</u>/

Carat, colour, clarity, cut

Total depth, table, depth, width, height

Price

depth = z / diametertable = table width / x * 100

Write down five ways to inspect the diamonds dataset.

You have one minute!

Histogram & bar charts

Histograms and barcharts

Used to display the **distribution** of a variable

Categorical variable \rightarrow bar chart

Continuous variable \rightarrow histogram

With only one variable, qplot guesses that # you want a bar chart or histogram qplot(cut, data = diamonds)

```
qplot(carat, data = diamonds)
```

```
# Change binwidth:
qplot(carat, data = diamonds, binwidth = 1)
qplot(carat, data = diamonds, binwidth = 0.1)
qplot(carat, data = diamonds, binwidth = 0.01)
resolution(diamonds$carat)
```

```
last_plot() + xlim(0, 3)
```

Always experiment with the bin width!

qplot(table, data = diamonds, binwidth = 1)

To zoom in on a plot region use xlim() and ylim()
qplot(table, data = diamonds, binwidth = 1) +
 xlim(50, 70)
qplot(table, data = diamonds, binwidth = 0.1) +
 xlim(50, 70)
qplot(table, data = diamonds, binwidth = 0.1) +
 xlim(50, 70) + ylim(0, 50)

Note that this type of zooming discards data
outside of the plot regions. See
?coord_cartesian() for an alternative

Additional variables

As with scatterplots can use **aesthetics** or **faceting**. Using aesthetics creates pretty, but ineffective, plots.

The following examples show the difference, when investigation the relationship between cut and depth.

Your turn

Explore the distribution of price. What is a good binwidth to use? (Hint: How many bins will a binwidth of 1 give you?) Practice zooming in on regions of interest.

How does price vary with colour, cut, or clarity?

Problems

Each histogram far away from the others, but we know stacking is hard to read \rightarrow *use another way of displaying densities*

Varying relative abundance makes comparisons difficult \rightarrow rescale to ensure constant area

```
# Large distances make comparisons hard
qplot(price, data = diamonds, binwidth = 500) +
facet_wrap(~ cut)
```

```
# Stacked heights hard to compare
qplot(price, data = diamonds, binwidth = 500, fill = cut)
```

```
# Much better - but still have differing relative abundance
qplot(price, data = diamonds, binwidth = 500,
geom = "freqpoly", colour = cut)
```

```
# Instead of displaying count on y-axis, display density
# .. indicates that variable isn't in original data
qplot(price, ..density.., data = diamonds, binwidth = 500,
geom = "freqpoly", colour = cut)
```

```
# To use with histogram, you need to be explicit
qplot(price, ...density..., data = diamonds, binwidth = 500,
geom = "histogram") + facet_wrap(~ cut)
```

Scatterplots for big data

Idea	ggplot
Small points	<pre>shape = I(".")</pre>
Transparency	alpha = I(1/50)
Jittering	geom = "jitter"
Smooth curve	geom = "smooth"
2d bins	geom = "bin2d" or geom = "hex"
Density contours	geom = "density2d"
Boxplots	geom = "boxplot" + group =

```
# There are two ways to add additional geoms
# 1) A vector of geom names:
qplot(price, carat, data = diamonds,
   geom = c("point", "smooth"))
```

```
# 2) Add on extra geoms
qplot(price, carat, data = diamonds) + geom_smooth()
```

This is how you get help about a specific geom: # ?geom_smooth # To set aesthetics to a particular value, you need # to wrap that value in I()

qplot(price, carat, data = diamonds, colour = "blue")
qplot(price, carat, data = diamonds, colour = I("blue"))

Practical application: varying alpha
qplot(carat, price, data = diamonds, alpha = I(1/10))
qplot(carat, price, data = diamonds, alpha = I(1/50))
qplot(carat, price, data = diamonds, alpha = I(1/100))
qplot(carat, price, data = diamonds, alpha = I(1/250))

```
qplot(table, price, data = diamonds)
qplot(table, price, data = diamonds,
   geom = "boxplot")
```

Need to specify grouping variable: what determines
which observations go into each boxplot
qplot(table, price, data = diamonds,
 geom = "boxplot", group = round_any(table, 1))

```
qplot(table, price, data = diamonds,
  geom = "boxplot", group = round_any(table, 1)) +
  xlim(50, 70)
```

Your turn

Explore the relationship between carat, price and cut using these techniques. (i.e. make this plot more informative: qplot(carat, price, data = diamonds, colour = cut))

Which did you find most useful?