"The human understanding, on account of its own nature, readily supposes a greater order and uniformity in things than it finds. And ... it devises parallels and correspondences and relations which are not there."
-Francis Bacon, 1620

# "Thelsunderstanding, on account of its own nature, $\mathbf{a t}$ WQ oses a greater order and uniformity inthings Se\& res. And ... it devises paralle there? sponcallynd relations which are not there. <br> -Francis Bacon, I620 

# Graphical inference for infovis 

Hadley Wickham, Dianne Cook, Heike Hofmann, Andreas Buja


Which one of these plots is not like the others? Which of these plots just doesn't belong?

7 of those plots were plots of random (null) data. 1 plot was the real data.
If you correctly picked the true plot from the null plots then we have evidence that it really is different.


In fact, we have rigorous statistical evidence that there is a difference, just using Sesame Street skills!

1. The statistical justice system 2. Line up protocol
2. Rorschach protocol
3. Future work

## Hypothesis testing?

## Hypothesis testing? <br> The statistical justice system

Ho: null hypothesis
Ha: alternative hypothesis

Defence
Prosecution

## Ho: null hypothesis <br> Ha: alternative hypothesis

Null distribution

## Defence <br> Prosecution

Innocents

## Ho: null hypothesis <br> Ha: alternative hypothesis

Null distribution

Reject the null
Fail to reject the null

## Defence <br> Prosecution

Innocents

Guilty
Not guilty

Ho: null hypothesis
Ha: alternative hypothesis
Null distribution

Reject the null
Fail to reject the null
p-value

## Defence <br> Prosecution

Innocents

Guilty
Not guilty

Probability that a truly innocent dataset would look as guilty as the suspect


| ve | believe believe | believe believe | believe believe | believe believe |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  | CaSe closely | CaSe closely | CaSe closely |
| closely descendants | clos | closely descendants |  | closely descendan |
| descendants few few | de | descendants | scendants few few | scendants few |
| long long modified modified variations | long long modi modified variation | long long modified modified variations | long long modified modified variations | long long modified modified variations |
|  |  |  | 1 | ns Very |
| Very view view | very view view | very view view | very view view | $r y_{\text {view }}$ view |

Five tag clouds of selected words from the 1st (red) and 6th (blue) editions of Darwin's "Origin of Species". Four of the tag clouds were generated under the null hypothesis of no difference between editions, and one is the true data. Can you spot it?


Five tag clouds of selected words from the 1st (red) and 6th (blue) editions of Darwin's "Origin of Species". Four of the tag clouds were generated under the null hypothesis of no difference between editions, and one is the true data. Can you spot it?

## Protocol

Generate n-1 decoys
(null datasets)
Plot the decoys + the real data (randomly positioned)

Show to an impartial observer. Can they spot the real data?

If so, you have evidence for true difference ( $p$-value = $1 / n$ )

E. L. Scott, C. D. Shane, and M. D. Swanson. Comparison of the synthetic and actual distribution of galaxies on a photographic plate. Astrophysical Journal, 119:91-112, Jan. 1954.

A. M. NoIl. Human or machine: A subjective comparison of Piet Mondrian's "composition with lines" (1917) and a computergenerated picture. The Psychological Record, 16:1-10, 1966.

## vs. classical tests

Of course, if we know what we're looking for, we can always develop an algorithm or numerical test.

The advantage of visual inference is that works for very general tasks, including when you don't know exactly what you're looking for.

## Recent work shows that power only a little worse than classical test


power_curve

- Theoretical test
--.- Visual test lower_CL upper_CL

| Plot | Task |
| :---: | :---: |
| Choropleth <br> map | Is there a spatial trend? |
| Treemap | Is the distribution in higher <br> level categories the same? |
| Scatterplot | Are the two variables <br> independent? |
| Time series | Is there a trend in mean or <br> variability? |






## 000

\# Support package written in R
\# http://github.com/ggobi/nullabor
\# Provides reference implementation of ideas
library(nullabor)
library(ggplot2)
qplot(angle * 180 / pi, r, data = threept) \%+\% lineup(null_model(r ~ poly(angle, 2)), n = 10) + facet_wrap(~ .sample, ncol = 5)

## Rorschach

## Rorschach

We're surprisingly bad at appreciating the amount of variation in random data.

Showing only null plots is a good way to calibrate our intuition.

We also plan on using these plots as an empirical tool to understand what features people pick up on. Anecdotally, undergrads focus too much on outliers


## Buture work

## Future work

How can visual inference be integrated into visualisation software at a fundamental level?

How does training impact results? How do novices vs. experts differ?

What patterns do people pick up on? What are the alternatives that people respond to?

## Questions?

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/ 3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

