
Hadley Wickham
Assistant Professor / Dobelman Family Junior Chair

Department of Statistics / Rice University

Testing

June 2012
Wednesday, June 27, 12

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

1. Motivation

2. Overview

3. Expectations

4. Tests

5. Context

6. Running tests

Wednesday, June 27, 12

Motivation

Wednesday, June 27, 12

• traceback() tells you where the problem is
• browser() starts an interactive debugger

where it’s called
• options(error = recover) starts

interactive debugger automatically on error
• options(warn = 2) turns warnings into

errors so you can find them more easily

You already know
how to debug

Wednesday, June 27, 12

Automated tests
How do you keep bugs from coming
back?
You can’t manually check every function
every time you make a change – it takes
too long
Solution: automate your testing so you
can quickly run tests after every change

Wednesday, June 27, 12

Modify and
save code

Reload in R

Does it work?

Identify the
task

Write an
automated testYES

NO

Exploratory programming

Document
Wednesday, June 27, 12

Confirmatory programming

Modify and
save code

Reload in R

Does it work?

Write an
automated test

YES

NO

Document it

aka test driven development (TDD)
Wednesday, June 27, 12

Other benefits
• Code that can be tested easily, often

has a better, more modular, design
• When you stop working, leave a test

failing. You’ll know what to work on
when you come back

• Make big changes without fear of
accidentally breaking anything

Wednesday, June 27, 12

Testing packages

• RUnit

• svUnit

• testthat

Wednesday, June 27, 12

Why test that?

• Easy transition from informal to formal
tests. Can be used in wide variety of
situations

• Wide range of expectations/assertions
• Fun, colourful output that keeps you

motivated

https://github.com/hadley/devtools/wiki/Testing

http://bitly.com/testthat

Wednesday, June 27, 12

https://github.com/hadley/devtools/wiki/Testing
https://github.com/hadley/devtools/wiki/Testing
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat
https://bitly.com/testthat

Example packages

• testthat, stringr, plyr, lubridate

• ffbase, ISOweek

• Reverse suggests from:
http://cran.r-project.org/web/packages/testthat/

Wednesday, June 27, 12

http://cran.r-project.org/web/packages/testthat/index.html
http://cran.r-project.org/web/packages/testthat/index.html

Overview

Wednesday, June 27, 12

Key components
• Expectations: what do you expect a

function to do?
• Tests: a group of expectations that

tests a small piece
• Contexts: a group of tests that tests

behaviour of a large piece of
functionality (function, class, etc)

Wednesday, June 27, 12

context("Expectation")

dice <- rv(1:6)
coin <- rv(c(-1, 1))

test_that("expectation is additive", {
 expect_that(E(dice + coin), equals(E(dice) + E(coin)))

 expect_that(E(dice + dice), equals(2 * E(dice)))
 expect_that(E(dice + dice + dice), equals(3 * E(dice)))
})

Wednesday, June 27, 12

Your turn

Look at some-tests. Where are the tests?
How are they structured?
Run the tests using test("some-tests").
What do you see? What does each dot
represent?
Where is the failing test?

Wednesday, June 27, 12

Green . = passing test
Red number = failing test (or error)
Numbers index list of all failed expectation
giving message and test name.

VAR <- function(x) E((x - E(x) ^ 2))
should be
VAR <- function(x) E((x - E(x)) ^ 2)

fix and then re-run tests

Wednesday, June 27, 12

Expectations

Wednesday, June 27, 12

Expectation Test Abbreviation

equals all.equals expect_equal

is_identical_to identical expect_identical

is_equivalent_to
all.equals,
check.attributes =
FALSE

expect_equivalent

is_a inherits expect_is

is_true / is_false identical expect_true /
expect_false

Wednesday, June 27, 12

Expectation Test Abbreviation

matches grepl + any expect_matches

prints_text matches applied to
output expect_output

shows_message matches applied to
messages expect_message

gives_warning matches applied to
warnings expect_warning

throws_error matches on errors expect_error

Wednesday, June 27, 12

Your turn

Add a new file (and context) for testing
probabilities. Test that rv’s have
probability 1 of being greater than -Inf
and smaller than Inf.
What happens if you supply a missing
value? What should happen? Write a test.

Wednesday, June 27, 12

context("Probability")

test_that("0 probability of being infinite", {
 X <- rv(1:10)
 expect_equal(P(X > -Inf), 1)
 expect_equal(P(X < -Inf), 0)
 expect_equal(P(X > Inf), 0)
 expect_equal(P(X < Inf), 1)
})

test_that("missing comparison means 100% of NA", {
 X <- rv(1:5)
 expect_equal(P(X > NA), NA_real_)
}

Wednesday, June 27, 12

Running
tests

Wednesday, June 27, 12

Casually, during development
(automatically reloads all code)
test("some-tests")

More formally
install("some-tests")
test_package("some-tests")

Even more formally (and the next topic)
check("some-tests")

Wednesday, June 27, 12

Package tests
Store all tests in inst/tests so they are
installed with the package. Then users
can run to check their installation/OS is
ok.
Include the following code in tests/test-
all.R (note capital R). This ensures R CMD
check will not pass unless all tests pass

Wednesday, June 27, 12

library(testthat)
This loads the version being tested
library(rv)

test_package("rv")

Wednesday, June 27, 12

Wednesday, June 27, 12

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United
States License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

Wednesday, June 27, 12

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

