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Motivation
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• traceback() tells you where the problem is
• browser() starts an interactive debugger 

where it’s called
• options(error = recover) starts 

interactive debugger automatically on error
• options(warn = 2) turns warnings into 

errors so you can find them more easily

You already know 
how to debug
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Automated tests
How do you keep bugs from coming 
back?
You can’t manually check every function 
every time you make a change – it takes 
too long
Solution: automate your testing so you 
can quickly run tests after every change
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Modify and 
save code

Reload in R

Does it work?

Identify the 
task

Write an 
automated testYES

NO

Exploratory programming

Document
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Confirmatory programming

Modify and 
save code

Reload in R

Does it work?

Write an 
automated test

YES

NO

Document it

aka test driven development (TDD)
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Other benefits
• Code that can be tested easily, often 

has a better, more modular, design
• When you stop working, leave a test 

failing. You’ll know what to work on 
when you come back

• Make big changes without fear of 
accidentally breaking anything
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Testing packages

• RUnit 

• svUnit 

• testthat 
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Why test that?

• Easy transition from informal to formal 
tests. Can be used in wide variety of 
situations

• Wide range of expectations/assertions
• Fun, colourful output that keeps you 

motivated

https://github.com/hadley/devtools/wiki/Testing

http://bitly.com/testthat
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Example packages

• testthat, stringr, plyr, lubridate  

• ffbase, ISOweek 

• Reverse suggests from: 
http://cran.r-project.org/web/packages/testthat/
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Overview
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Key components
• Expectations: what do you expect a 

function to do?
• Tests: a group of expectations that 

tests a small piece
• Contexts: a group of tests that tests 

behaviour of a large piece of 
functionality (function, class, etc)
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context("Expectation")

dice <- rv(1:6)
coin <- rv(c(-1, 1))

test_that("expectation is additive", {
  expect_that(E(dice + coin), equals(E(dice) + E(coin)))

  expect_that(E(dice + dice), equals(2 * E(dice)))
  expect_that(E(dice + dice + dice), equals(3 * E(dice)))
})
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Your turn

Look at some-tests. Where are the tests?  
How are they structured?
Run the tests using test("some-tests").  
What do you see? What does each dot 
represent?
Where is the failing test?
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# Green . = passing test
# Red number = failing test (or error)
# Numbers index list of all failed expectation
#  giving message and test name.

VAR <- function(x) E((x - E(x) ^ 2))
# should be 
VAR <- function(x) E((x - E(x)) ^ 2)

# fix and then re-run tests

Wednesday, June 27, 12



Expectations
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Expectation Test Abbreviation

equals all.equals expect_equal

is_identical_to identical expect_identical

is_equivalent_to
all.equals, 
check.attributes = 
FALSE

expect_equivalent

is_a inherits expect_is

is_true / is_false identical expect_true / 
expect_false
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Expectation Test Abbreviation

matches grepl + any expect_matches

prints_text matches applied to 
output expect_output

shows_message matches applied to 
messages expect_message

gives_warning matches applied to 
warnings expect_warning

throws_error matches on errors expect_error
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Your turn

Add a new file (and context) for testing 
probabilities. Test that rv’s have 
probability 1 of being greater than -Inf 
and smaller than Inf.
What happens if you supply a missing 
value? What should happen? Write a test.
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context("Probability")

test_that("0 probability of being infinite", {
  X <- rv(1:10)
  expect_equal(P(X > -Inf), 1)
  expect_equal(P(X < -Inf), 0)
  expect_equal(P(X > Inf), 0) 
  expect_equal(P(X < Inf), 1)
})

test_that("missing comparison means 100% of NA", {
  X <- rv(1:5)
  expect_equal(P(X > NA), NA_real_)
}
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Running 
tests
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# Casually, during development
# (automatically reloads all code)
test("some-tests")

# More formally
install("some-tests")
test_package("some-tests")

# Even more formally (and the next topic)
check("some-tests")
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Package tests
Store all tests in inst/tests so they are 
installed with the package. Then users 
can run to check their installation/OS is 
ok.
Include the following code in tests/test-
all.R (note capital R).  This ensures R CMD 
check will not pass unless all tests pass
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library(testthat)
# This loads the version being tested
library(rv) 

test_package("rv")
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This work is licensed under the Creative 
Commons Attribution-Noncommercial 3.0 United 
States License. To view a copy of this license, 
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons, 
171 Second Street, Suite 300, San Francisco, 
California, 94105, USA.
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