
Hadley Wickham
Assistant Professor / Dobelman Family Junior Chair

Department of Statistics / Rice University

Easy package
development

June 2012
Wednesday, June 27, 12

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

Hadley
HELLO

my name is

Wednesday, June 27, 12

Winston Chang
Research Associate
Department of Statistics
Rice University

Facebook © 2011 · English (US)

About · Advertising · Create a Page · Developers · Careers · Privacy · Terms · Help

Wednesday, June 27, 12

http://www.facebook.com/facebook
http://www.facebook.com/facebook
http://www.facebook.com/campaign/landing.php?placement=pf&campaign_id=402047449186&extra_1=auto
http://www.facebook.com/campaign/landing.php?placement=pf&campaign_id=402047449186&extra_1=auto
http://www.facebook.com/pages/create.php?ref_type=sitefooter
http://www.facebook.com/pages/create.php?ref_type=sitefooter
http://developers.facebook.com/?ref=pf
http://developers.facebook.com/?ref=pf

• Opinionated advice – not everyone
agrees that this is the right way to build
packages.

• Don’t look at ggplot2 (yet)
• This class only scratches the surface –

many more details to learn.

Caveats

Wednesday, June 27, 12

Outline

• Package basics: devtools

• Documentation: roxygen2

• Testing: testthat

• Releasing your package: devtools

Wednesday, June 27, 12

Getting
started

Wednesday, June 27, 12

Check that you're ready to go

library(devtools)
has_devel()

If not:
* on windows: install Rtools
* on mac: install xcode
* on linux: install gcc, make

library(testthat)
library(roxygen2)

Wednesday, June 27, 12

Packages to look at
• devtools, evaluate, lubridate,

reshape2, stringr, testthat: source
code for my packages

• coin, Matrix: illustrate other important
parts of packages that I don’t use

• one-file, minimal, ...: various stages
of a package you’ll be developing today

Wednesday, June 27, 12

Learn from others
Read the source of other packages!
https://github.com/hadley/plyr

https://github.com/hadley/stringr

https://github.com/hadley/devtools

https://github.com/hadley/lubridate

https://github.com/hadley/evaluate

https://github.com/hadley/reshape

If you only

remember one

thing:

Wednesday, June 27, 12

https://github.com/hadley/plyr
https://github.com/hadley/plyr
https://github.com/hadley/stringr
https://github.com/hadley/stringr
https://github.com/hadley/devtools
https://github.com/hadley/devtools
https://github.com/hadley/lubridate
https://github.com/hadley/lubridate
https://github.com/hadley/evaluate
https://github.com/hadley/evaluate

Wednesday, June 27, 12

Wednesday, June 27, 12

Download and extract the source code
for one R package that you use regularly.
Read the source code for the function
from that package that use most regularly.
What did you learn?

Your turn

Wednesday, June 27, 12

Working
directory

Wednesday, June 27, 12

All paths in R are relative to the working
directory. Life is much easier when you
have it correctly set.
Usually want one project per directory.
(See also Rstudio’s project support)
Makes code easy to move between
computers. Never use setwd() in a script.

Why?

Wednesday, June 27, 12

Rstudio: Tools | Set working directory |
Choose directory ... (⌃⇧K)
Windows: File | Change dir. For frequent
use, make shortcut in that folder.
Mac: ⌘D
Terminal: start R from the desired
directory

How?

Wednesday, June 27, 12

Find out what directory you’re in
getwd()

List files in that directory
dir()

Wednesday, June 27, 12

Make sure your working directory is set to
the rv directory inside the code and data
directory you downloaded. Use dir() to
check you’re in the right place.

Your turn

Wednesday, June 27, 12

Projects

• RStudio’s projects make this even
easier: double click on Rproj file to set
working directory and restore state

• Also enables project search

Wednesday, June 27, 12

Discrete
random

variables

Wednesday, June 27, 12

Definitions
A random variable is a random experiment
with a numeric sample space. Usually given
a capital letter like X, Y or Z.
(More formally a random variable is a function
that converts outcomes from a random
experiment into numbers)
The space (or support) of a random variable
is the range of the function (cf. sample space)

Wednesday, June 27, 12

probability pmf

P (a < X < b) =
X

xi2(a,b)

f(x
i

)

P (X = x) = f(x)

Wednesday, June 27, 12

P (X = xi) = f(xi)
To be a pmf, f must satisfy
two conditions:

X

xi2S

f(x
i

) = 1

f(xi) � 0, 8 xi 2 S

Wednesday, June 27, 12

Transformations

Let X be a discrete random variable with
pmf f as defined above.
Write out the pmfs for:
A = X + 2 B = 3X C = X2 D = 0 * X

x -1 0 1 2 3
f(x) 0.2 0.1 0.3 0.1 0.3

Wednesday, June 27, 12

Mean & variance
The mean summarises the “middle” of the
distribution. The variance summarises the
“spread” of the distribution.
Mean = E(X) = “Sum” of all outcomes,
weighted by their probability.
Variance = Var(X) = E[(X - E[X])2)] =
expected squared distance from mean

Wednesday, June 27, 12

Expectation
Expectation is a linear operator:
Expectation of a sum =
sum of expectations (additive)

Expectation of a constant * a function =
constant * expectation of function (homogenous)

Expectation of a constant is a constant.

Wednesday, June 27, 12

