
Hadley Wickham
Assistant Professor / Dobelman Family Junior Chair

Department of Statistics / Rice University

Development best
practices

June 2012
Wednesday, June 27, 12

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

1. Correct code

2. Maintainable code

3. Fast code

4. Learning more

Wednesday, June 27, 12

Correct code

Wednesday, June 27, 12

Testing

• Will focus on systematic unit testing
tomorrow afternoon

• Today we’ll discuss debugging, and
basic techniques for making your code
more robust

Wednesday, June 27, 12

Rules of thumb
• Use TRUE and FALSE, not T and F
• Avoid functions that have non-standard

evaluation rules (no subset, with,
transform)

• Avoid functions that can have different
types of output (sapply, always use drop =
FALSE)

• Be explicit about missings.

Wednesday, June 27, 12

Check preconditions

Always best to fail early - as soon as you
know something is wrong.
If your function expects certain types of
input, it’s a good idea to test that they are
as expected. stopifnot is a quick and
dirty way of doing so.

Wednesday, June 27, 12

Take the function on the next page and
make it work more reliably, or at least give
sensible error messages.

Your turn

Wednesday, June 27, 12

col_means <- function(df) {
 numeric <- sapply(df, is.numeric)
 numeric_cols <- df[, numeric]

 data.frame(lapply(numeric_cols, mean))
}

col_means(mtcars)
col_means(mtcars[, 0])
col_means(mtcars[0,])
col_means(mtcars[, "mpg", drop = F])
col_means(1:10)
col_means(as.matrix(mtcars))
col_means(as.list(mtcars))

mtcars2 <- mtcars
mtcars2[-1] <- lapply(mtcars2[-1], as.character)
col_means(mtcars2)

Wednesday, June 27, 12

col_means <- function(df) {
 numeric <- vapply(df, is.numeric, logical(1))
 numeric_cols <- df[, numeric, drop = FALSE]

 data.frame(lapply(numeric_cols, mean))
}

Wednesday, June 27, 12

No peeking until you’ve
made an attempt!

Wednesday, June 27, 12

My solution:

col_means <- function(df) {
 # stopifnot(is.data.frame(df))
 df <- as.data.frame(df)

 numeric <- vapply(df, is.numeric, logical(1))
 numeric_cols <- df[, numeric, drop = FALSE]

 data.frame(lapply(numeric_cols, mean))
}

Wednesday, June 27, 12

• traceback() tells you where the problem is
• browser() starts an interactive debugger

where it’s called
• options(error = recover) starts

interactive debugger automatically on error
• options(warn = 2) turns warnings into

errors so you can find them more easily

Debugging

Wednesday, June 27, 12

Trace

• Allows you to insert code into any
function

• debug() automatically inserts browser(),
debugonce() automatically removes it
after it’s called once.

Wednesday, June 27, 12

Also some tools for post-mortem debugging of
non-interactive scripts

options(error =
 quote({dump.frames(to.file = TRUE); q()}))

Saves debugging info to file last.dump.rda

Then in an interactive R session:
print(load("last.dump.rda"))
debugger("last.dump")

Just like if you'd used recover()

Wednesday, June 27, 12

Maintainable
code

Wednesday, June 27, 12

Tips
• Code gets faster as computers get

faster. It never gets correct by itself,
and it never gets more elegant.

• Pick a style guide and stick with it.
https://github.com/hadley/devtools/wiki/Style

• Use source code control
(more on that tomorrow)

Wednesday, June 27, 12

https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style

More tips

• Rewrite important code - your first
attempt will not usually be the best
approach.

• Use comments to explain why, not
what or how.

Wednesday, June 27, 12

Fast code
Figure out what’s slow.

Speed it up.

Wednesday, June 27, 12

What’s slow?

Wednesday, June 27, 12

RProf
Every interval seconds, writes the call
stack out to a file on disk.
library(ggplot2)

Rprof("5-profile-ggplot2.txt")

qplot(carat, price, data = diamonds)

Rprof(NULL)

Wednesday, June 27, 12

• "ggplot.data.frame" "ggplot" "qplot"

• "<Anonymous>" "set_last_plot" "+.ggplot" "+" "qplot"
• "plot_clone" "+.ggplot" "+" "<Anonymous>" ".Call"

"mapply" "qplot"
• "plot_clone" "+.ggplot" "+" "<Anonymous>" ".Call"

"mapply" "qplot"

• "plot_clone" "+.ggplot" "+" "<Anonymous>" ".Call"
"mapply" "qplot"

• "unlist" "as.vector" "simplify2array" "mapply" "qplot"
• "<Anonymous>" "set_last_plot" "print.ggplot" "print"
• "c" "do.call" "transform.data.frame" "transform"

"facet_map_layout.null" "facet_map_layout" "FUN" "lapply"
"map_layout" "ggplot_build" "print.ggplot" "print"

• "data.frame" "do.call" "transform.data.frame" "transform"
"facet_map_layout.null" "facet_map_layout" "FUN" "lapply"
"map_layout" "ggplot_build" "print.ggplot" "print"

Wednesday, June 27, 12

SummaryRProf summarises in a format that I
don’t find very helpful. I wrote the profr
package to do better.
library(profr)

p <- parse_rprof("5-profile-ggplot2.txt")

OR

p <- profr(print(qplot(carat, price,

 data = diamonds)))

Summarising

Wednesday, June 27, 12

 level f start end time source
1 1 qplot 0.00 0.12 0.12 <NA>
2 1 print 0.12 3.94 3.82 base
3 2 ggplot 0.00 0.02 0.02 <NA>
4 2 + 0.02 0.04 0.02 base
5 2 mapply 0.04 0.12 0.08 base
6 2 print.ggplot 0.12 3.94 3.82 <NA>
7 3 ggplot.data.frame 0.00 0.02 0.02 <NA>
8 3 +.ggplot 0.02 0.04 0.02 <NA>
9 3 .Call 0.04 0.10 0.06 <NA>
10 3 simplify2array 0.10 0.12 0.02 base
11 3 set_last_plot 0.12 0.14 0.02 <NA>
12 3 ggplot_build 0.14 0.78 0.64 <NA>
13 3 ggplotGrob 0.78 1.58 0.80 <NA>
14 3 grid.draw 1.58 3.94 2.36 <NA>
15 4 set_last_plot 0.02 0.04 0.02 <NA>
16 4 <Anonymous> 0.04 0.10 0.06 <NA>
17 4 as.vector 0.10 0.12 0.02 base
18 4 <Anonymous> 0.12 0.14 0.02 <NA>
19 4 map_layout 0.14 0.18 0.04 <NA>
20 4 dlapply 0.18 0.24 0.06 <NA>

head(p, 20)

Wednesday, June 27, 12

plot(p)

0 1 2 3 4

0
5

10
15

20
25

30
35

time

le
ve
l

printprint.ggplotggplot_build ggplotGrob grid.drawMap grid.draw.gTreemapply recordGraphics.Call drawGTree<Anonymous> grid.drawdlply grid.draw.gTreellply recordGraphicsloop_apply drawGTree.Call grid.draw<Anonymous> grid.draw.gTree.fun recordGraphics<Anonymous> drawGTree<Anonymous> grid.drawgrid.draw.grobrecordGraphicsdrawGrobdrawDetailsdrawDetails.pointsgrid.Call.graphics.Call.graphics

Wednesday, June 27, 12

explore(p)

Wednesday, June 27, 12

Wednesday, June 27, 12

Wednesday, June 27, 12

Memory profiling
• gcTorture(T) +

RProf(memory.profiling = T) - gives
minimum memory usage

• Rprofmem() - gives maximum memory
usages

• tracemem(x) - prints message
whenever x is duplicated

Wednesday, June 27, 12

How can you make it
faster?

Wednesday, June 27, 12

Speeding up code
• Avoid common mistakes (see chapters

2-4 on Patrick Burn’s “R inferno” for
good advice)

• Vectorise (vocab)
• Re-think your approach
• Rewrite in C, Fortran or C++

Wednesday, June 27, 12

If you know how long your result will be,
preallocate the storage
grow <- function() {
 output <- c()
 for(i in 1:10000) {
 output <- c(output, i ^ 2)
 }
 output
}

preallocate <- function() {

 output <- rep(NA, 10000)
 for(i in 1:10000) {
 output[i] <- i ^ 2
 }
 output
}

library(microbenchmark)
b <- microbenchmark(grow(), preallocate(), times = 10)
print(b, unit = "eps")

Wednesday, June 27, 12

But you should always vectorise (i.e.
push loops into pre-written C) where possible

vectorise <- function() (1: 10000) ^ 2
b <- microbenchmark(grow(), preallocate(),
 vectorise(), times = 10)
print(b, unit = "eps")

Key to this technique is building up a good
R vocabulary

Wednesday, June 27, 12

Compare the two methods for growing a
vector on the next slide.
How do they work?
Do they return the same results?
Which is faster?

Your turn

Wednesday, June 27, 12

grow2 <- function() {
 set.seed(1000)

 output <- numeric()
 while(sample(1e5, 1) > 1) {
 output <- c(output, 1)
 }
 output
}
double <- function() {
 set.seed(1000)

 output <- rep(NA, 10)
 n <- 10
 i <- 0

 while(sample(1e5, 1) > 1) {
 i <- i + 1
 if (i > n) {
 output <- c(output, rep(NA, n))
 n <- 2 * n
 }
 output[i] <- 1
 }
 output[seq_len(i)]
}

Wednesday, June 27, 12

system.time(g <- grow2())
system.time(d <- double())
all.equal(d, g)

Wednesday, June 27, 12

df <- function() {
 for(i in nrow(mtcars)) {
 mtcars[i, "cyl"] <- mtcars[i, "cyl"] * 2
 }

 mtcars
}

vector <- function() {
 var <- mtcars$cyl

 for(i in nrow(mtcars)) {
 var[i] <- var[i] * 2
 }
 mtcars$cyl <- var
 mtcars
}

b <- microbenchmark(df(), vector())
print(b, unit = "eps")

Wednesday, June 27, 12

df <- function() {

 result <- matrix(nrow(mtcars), ncol(mtcars))
 for(i in nrow(mtcars)) {
 result[i,] <- as.numeric(mtcars[i,])
 }

 result
}

Wednesday, June 27, 12

Compiler package available since 2.13
10-20% speedups on most functions.
More dramatic on a few special cases.
Still a work in progress – will only get
better with time.
Worth a shot!

Byte code compiler

Wednesday, June 27, 12

library(compiler)

df2 <- cmpfun(df)
microbenchmark(df(), df2())

vector2 <- cmpfun(vector)
microbenchmark(vector(), vector2())

Wednesday, June 27, 12

These are microbenchmarks, which test a
very very small specific piece of code.
You must have correctly identified what is
slow before they can be useful.

Caution

Wednesday, June 27, 12

Learning
more

Wednesday, June 27, 12

Within R
Subscribe to R-devel.
Read the source, particularly of the code
and packages that you use most
commonly
Never be satisfied. Concentrated and
reflective practice is key to mastery.
Invest time now to save time later.

Wednesday, June 27, 12

Manuals

http://cran.r-project.org/manuals.html
R language definition
R internals

Wednesday, June 27, 12

http://cran.r-project.org/manuals.html
http://cran.r-project.org/manuals.html

Build your vocab
https://github.com/hadley/devtools/wiki/
vocabulary.
Read R help.
Read R release notes.
Read stackoverflow
http://stackoverflow.com/tags/r
Read the R Journal

Wednesday, June 27, 12

https://github.com/hadley/devtools/wiki/vocabulary
https://github.com/hadley/devtools/wiki/vocabulary
https://github.com/hadley/devtools/wiki/vocabulary
https://github.com/hadley/devtools/wiki/vocabulary
http://stackoverflow.com/tags/r
http://stackoverflow.com/tags/r

Outside R
The structure and interpretation of computer
programs by Harold Abelson and Gerald Jay
Sussman. http://mitpress.mit.edu/sicp/full-text/
book/book.html
Concepts, Techniques and Models of Computer
Programming by Peter van Roy and Sef Haridi.
http://amzn.com/0262220695
The pragmatic programmer, by Andrew Hunt and
David Thomas. http://amzn.com/020161622X

Wednesday, June 27, 12

http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://amzn.com/0262220695?tag=hadlwick-20
http://amzn.com/0262220695?tag=hadlwick-20
http://amzn.com/0262220695?tag=hadlwick-20
http://amzn.com/0262220695?tag=hadlwick-20
http://amzn.com/0262220695
http://amzn.com/0262220695
http://amzn.com/020161622X?tag=hadlwick-20
http://amzn.com/020161622X?tag=hadlwick-20
http://amzn.com/020161622X
http://amzn.com/020161622X

Tomorrow

Wednesday, June 27, 12

This should work
library(devtools)
has_devel()

if it doesn't make sure, you have
* R 2.15
* devtools 0.7
* rtools from (windows only)
http://cran.r-project.org/bin/windows/Rtools/

Also check you have testthat and roxygen2 installed
library(testthat)
library(roxygen2)

Please make sure you have
winzip (or equivalent) installed
if you’re on windows

Wednesday, June 27, 12

http://cran.r-project.org/bin/windows/Rtools/
http://cran.r-project.org/bin/windows/Rtools/

Wednesday, June 27, 12

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United
States License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

Wednesday, June 27, 12

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

