
Hadley Wickham
Assistant Professor / Dobelman Family Junior Chair

Department of Statistics / Rice University

Controlling
evaluation

June 2012
Wednesday, June 27, 12

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

1. Motivation

2. Controlling evaluation

3. Practice on other functions

4. Computing on the language

https://github.com/hadley/devtools/wiki/Evaluation
Wednesday, June 27, 12

https://github.com/hadley/devtools/wiki/Evaluation
https://github.com/hadley/devtools/wiki/Evaluation

Motivation

Wednesday, June 27, 12

subset(mtcars, cyl == 4)
vs.
mtcars[mtcars$cyl == 4,]

How does it work?
subset <- function(x, condition) {
 condition_call <- substitute(condition)
 r <- eval(condition_call, x, parent.frame())
 x[r,]
}

Wednesday, June 27, 12

Our chief motivation is to create functions
that reduce typing, which is particularly
important for interactive use. One way of
creating domain specific languages.
But this comes at a cost of making
programming with these functions harder.

Motivation

Wednesday, June 27, 12

1. Capture what you typed without
evaluating it (quoting)

2. Look for the variables in the right
place (evaluating)

3. Deal with a few special cases
(scoping)

Wednesday, June 27, 12

Quoting

Wednesday, June 27, 12

Wednesday, June 27, 12

A symbol, or name, is the name of an
object, like x or y, not its value, like 5 or
"a".
A call is a function call, like sum(1:10)
or x == y, not the result of that function.
An expression is a list of calls and
symbols, like the body of a function.
A language object is any of the above
or a constant (number or string).

NB: these are my definitions - there is not a lot of
consistency in the documentation or amongst R core.
Wednesday, June 27, 12

x <- quote(vs == am)
x
vs == am
str(x)
language vs == am

is.language(x)
[1] TRUE
is.call(x)
[1] TRUE
is.expression(x)
[1] FALSE

Wednesday, June 27, 12

call("==", "vs", "am")
call("==", vs, am)
call("==", as.name("vs"), as.name("am"))

Wednesday, June 27, 12

x <- parse(text = "vs == am")
is.expression(x)
[1] TRUE

Expressions are a list of calls/symbols
x[[1]]
vs == am
is.call(x[[1]])
[1] TRUE

Wednesday, June 27, 12

Why won’t this work?
subset <- function(x, condition) {
 quote(condition)
}
subset(mtcars, cyl == 4)

Your turn

Wednesday, June 27, 12

subset <- function(x, condition) {
 match.call()
}
subset(mtcars, vs == am)
subset(x = mtcars, condition = vs == am)

subset <- function(x, condition) {
 match.call()$condition
}
subset(mtcars, vs == am)
subset(x = mtcars, condition = vs == am)

Wednesday, June 27, 12

subset <- function(x, condition) {
 substitute(condition)
}
subset(mtcars, vs == am)

Uses lazy evaluation and extracts
call from promise/thunk

Also has other uses

Wednesday, June 27, 12

quote: captures call without evaluating it
call: builds up a call from component
pieces
parse: converts text representing a call
into a expression
match.call: captures how a function was
called
substitute: uses lazy evaluation to
extract the call

Wednesday, June 27, 12

Evaluating

Wednesday, June 27, 12

Evaluation

Now we’ve captured the condition call,
we want to evaluate it in the context of a
data frame: instead of looking up the
symbols in the global environment, we
want to look them up in a data frame

Wednesday, June 27, 12

An environment is a list of symbols and
their values. Every environment (apart
from the base environment) also has a
parent.
This is same idea as a list or data frame.
(Except that they don’t have parents)

Environments

Wednesday, June 27, 12

Given a call and an environment (or something like
an environment like a list or data frame), eval
will evaluate the call in that environment

x <- quote(vs == am)
eval(x, globalenv())
eval(x, mtcars)

What will happen when I run this code?
eval(vs == am, mtcars)

Wednesday, June 27, 12

subset <- function(x, condition) {
 condition_call <- substitute(condition)
 r <- eval(condition_call, x)
 x[r,]
}

subset(mtcars, cyl == 4)

It works!

Wednesday, June 27, 12

Scoping

Wednesday, June 27, 12

What should this do?

x <- 4
subset(mtcars, cyl == x)

y <- 4
subset(mtcars, cyl == y)

What does it do?
Why?

Wednesday, June 27, 12

We need to tell eval where to look if the
variables aren't found in the data frame.
We need to provide the equivalent of a parent
environment. That’s the third argument to eval

subset <- function(x, condition) {
 condition_call <- substitute(condition)
 r <- eval(condition_call, x, parent.frame())
 x[r,]
}

parent.frame() finds the environment in which
the current function is being executed

Wednesday, June 27, 12

x <- 4
f1 <- function() {
 x <- 6
 subset(mtcars, cyl == x)
}
f1()

f2 <- function() {
 x <- 8
 subset(mtcars, cyl == get("x"))
}
f2()

Wednesday, June 27, 12

An alternative approach would be to use a formula
Formulas quote and capture the environment in
which they are defined

subset <- function(x, f) {
 r <- eval(f[[2]], x, environment(f))
 x[r,]
}
subset(mtcars, ~ cyl == x)

Using formulas has the advantage that it's
very obvious that something non-standard is
going on

Wednesday, June 27, 12

Other
functions

Wednesday, June 27, 12

Package Function

base with

base transform

plyr mutate

plyr arrange

plyr summarise

Wednesday, June 27, 12

Your turn
Look at subset.data.frame. How does it
differ to our version? (Consult the
documentation if you’re not familiar with
all the parameters)
Look at transform.data.frame. What
does it do? How does it work? Why is the
first argument called `_data`?

Wednesday, June 27, 12

All these functions are useful for interactive
data analysis, but ARE NOT suitable for
programming with.

scramble <- function(x) x[sample(nrow(x)),]
scramble(mtcars)

subscramble <- function(x, condition) {
 scramble(subset(x, condition))
}
subscramble(mtcars, cyl == 4)
debugonce(subset)
subscramble(mtcars, cyl == 4)

Wednesday, June 27, 12

Wednesday, June 27, 12

Computing
on the

language

Wednesday, June 27, 12

How can we call a function that uses non-standard
evaluation?

library(lattice)
xyplot(disp ~ mpg, data = mtcars)

x <- "disp"
y <- "mpg"
xyplot(y ~ x, data = mtcars)

Wednesday, June 27, 12

Second use of substitute: modifying calls
Extremely useful when, for whatever reason, you
need to create a call as if you had typed that
code directly into the command line

substitute(x ~ y, list("x" = x, "y" = y))

substitute(x ~ y,
 list("x" = as.name(x), "y" = as.name(y)))

eval(substitute(x ~ y,
 list("x" = as.name(x), "y" = as.name(y))))

Wednesday, June 27, 12

f <- substitute(x ~ y, list(x = as.name(x),
 y = as.name(y)))
xyplot(f, data = mtcars)

f <- eval(substitute(x ~ y, list(x = as.name(x),
 y = as.name(y))))
xyplot(f, data = mtcars)

eval(substitute(xyplot(x ~ y, data = mtcars),
 list(x = as.name(x), y = as.name(y))))

Wednesday, June 27, 12

Rewrite subscramble using substitute
and eval so that it works.

Your turn

Wednesday, June 27, 12

subscramble <- function(x, condition) {
 condition_call <- substitute(condition)
 eval(substitute(scramble(subset(x, condition)),
 list(condition = condition_call)))
}

Wednesday, June 27, 12

calls are trees, and behave like lists
x <- quote(a * (b + 1))

First piece is name of function being called
x[[1]]

Subsequent pieces are arguments (language objects)
as.list(x[-1])
x[[2]]
x[[3]]
x[[3]][[1]]
x[[3]][[2]]
x[[3]][[2]][[1]]

Wednesday, June 27, 12

can modify calls
x <- quote(a * (b + 1))

x[[1]] <- as.name("c")
x

x[[1]] <- as.name("*")
x

y <- quote(lm(formula = disp ~ mpg, data = mtcars))
y$formula <- quote(price ~ carat)
y$data <- quote(diamonds)

See 2-draw-tree.r for an example that
draws call trees in a more informative manner.

Wednesday, June 27, 12

Your turn

Read the code for write.csv. How does
it work? How could you rewrite it more
simply?
What are the advantages/disadvantages
of the current and the simpler
approaches?

Wednesday, June 27, 12

write.csv <- function (x, file = "", quote = TRUE,
 eol = "\n", na = "NA", row.names = TRUE,
 fileEncoding = "") {

 write.table(x, file, quote = quote, eol = eol,
 na = na, row.names = row.names,
 fileEncoding = fileEncoding, sep = ",",
 dec = ".", qmethod = "double")
}

Main disadvantage is that you need to update the
arguments to write.csv if write.table changes

Wednesday, June 27, 12

Conclusions

Wednesday, June 27, 12

Conclusions
Subset illustrates many important
foundational R ideas: quoting, evaluating
and scoping.
Mastering these techniques allows you to
access a higher level of abstraction and
can make many previously difficult
problems easier to solve.
But expect frustration! It is not intuitive

Wednesday, June 27, 12

Wednesday, June 27, 12

Wednesday, June 27, 12

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United
States License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

Wednesday, June 27, 12

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

