320.
 R development masterclass

 Hadley Wickham

 Hadley Wickham}

Assistant Professor / Dobelman Family Junior Chair
Department of Statistics / Rice University

1. Introduction

2. Course outline

3. Revision

Introductions

HELLO my name is

Hadley

Winston Chang Research Associate Department of Statistics Rice University

Charlotte Wickham Assistant Professor Department of Statistics Oregon State University

Your turn

Who are you and what are you using R for?

Day one

- Controlling evaluation
- First class functions
- Object oriented programming
- Best practices

Day two

- Introduction to packages
- Documentation
- Testing
- Releasing your package

Tips

Ask questions!

Practice consciously: make a prediction, then test it, then reflect.

Keep an electronic copy of the slides open so you can copy and paste code.

Your turn

What are the four common types of atomic vectors? (Bonus points for the two uncommon types)

Brainstorm with your neighbour for 1 minute.

character

numeric
integer

logical

```
as.character(c(T, F))
as.character(seq_len(5))
as.logical(c(0, 1, 100))
as.logical(c("T", "F", "a"))
as.numeric(c("A", "100"))
as.numeric(c(T, F))
```

When vectors of different types occur in an expression, they will be automatically coerced to the same type: character > numeric $>$ logical
mode()
names()
Optional, but useful
length() A scalar is a vector of length 1

Technically, these are all atomic vectors

Your turn

How is a list different from an atomic vector?

How is a data frame different from a matrix?
How do you examine the structure of an object?

Brainstorm with your neighbour for 1 minute.

Same types
Different types

Your turn

What are the five types of object that you can subset with?

What's the difference between [, [[and \$? When might you use drop $=F$?

Brainstorm with your neighbour for 2 minutes.

blank
 include all

integer

+ ve: include
-ve: exclude

logical keep TRUEs

character lookup by name

Simplifying

Preserving

Vectors $\quad x[[1]]$
x[1:4]

Matrices/
Data frame

$$
x[1: 4,]
$$

$$
x[1: 4, \text {, drop }=F]
$$

$x[[1]]$
x\$name

$$
x[1]
$$

If list x is a train carrying objects, then $x[[5]]$ is the object in car $5 ; x[4: 6]$ is a train of cars 4-6.

Your turn

What are the three ways arguments supplied to a function are matched to the formal arguments? In what situations should you use each?

What does ... do ?

Argument matching

full name
partial name position
captures all other arguments can pass on to other functions

```
x<- 5
f <- function() {
        y <- 10
    c(x = x, y = y)
}
f()
g <- function() {
    x <- 20
    y<- 10
    c(x = x, y = y)
}
g()
h <- function() {
    y <- 10
    i <- function() {
            z <- 20
            c(x = x, y = y, z = z)
    }
    i()
}
h()
```

$$
\begin{aligned}
& \text { j <- function() \{ } \\
& \text { if (!exists("a")) \{ } \\
& \quad \text { a <- 5 } \\
& \text { \} else \{ } \\
& \text { a <- a + } 1 \\
& \text { \} } \\
& \text { print(a) }
\end{aligned}
$$

What does this function return the first time you run it? The second time?

This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/ 3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

