ggplot2 basics

Hadley Wickham

Assistant Professor / Dobelman Family Junior Chair
Department of Statistics / Rice University

1. Diving in: scatterplots \& aesthetics
2. Facetting
3. Geoms
4. Histograms and barcharts
5. Scatterplots for large data

Scatterplot basics

install.packages("ggplot2")
library (ggplot2)
?mpg
head (mpg)
str (mpg)
summary (mpg)
qplot(displ, hwy, data = mpg)

Scatterplot basics

install.packages("ggplot2")
library (ggplot2)
?mpg
head (mpg)
str (mpg)
summary (mpg)
Always explicitly specify the data
qplot(displ, hwy, data = mpg)

qplot(displ, hwy, data $=\mathrm{mpg}$)

Additional variables

Can display additional variables with aesthetics (like shape, colour, size) or facetting (small multiples displaying different subsets)

qplot(displ, hwy, colour = class, data = mpg)

Your turn

Experiment with colour, size, and shape aesthetics.

What's the difference between discrete or continuous variables?

What happens when you combine multiple aesthetics?

	Discrete	Continuous
Colour	Rainbow of colours	Gradient from red to blue
Size	Discrete size steps	Linear mapping between radius and value
Shape	Different shape for each	Shouldn't work

Faceting

Small multiples displaying different subsets of the data.

Useful for exploring conditional relationships. Useful for large data.

Your turn

qplot(displ, hwy, data = mpg) + facet_grid(. ~ cyl)
qplot(displ, hwy, data = mpg) + facet_grid(drv ~ .)
qplot(displ, hwy, data = mpg) + facet_grid(drv ~ cyl)
qplot(displ, hwy, data = mpg) + facet_wrap(~ class)

Summary

facet_grid(): 2d grid, rows ~ cols, . for no split
facet_wrap(): 1d ribbon wrapped into 2d

Aside: workflow

Keep a copy of the slides open so that you can copy and paste the code.

qplot(cty, hwy, data = mpg, geom = "jitter")

qplot(class, hwy, data $=\mathrm{mpg})$
 qplot (class, hwy, data $=\mathrm{mpg})$

qplot(reorder(class, hwy), hwy, data $=\mathrm{mpg}$, geom $=c($ "jitter", "boxplot" $")$)

Your turn

Read the help for reorder. Redraw the previous plots with class ordered by median hwy.

How would you put the jittered points on top of the boxplots?

Diamonds data

$\sim 54,000$ round diamonds from http://www.diamondse.info/

Carat, colour, clarity, cut
Total depth, table, depth, width, height

Price

K table width \rightarrow

depth $=\mathrm{z} /$ diameter
table $=$ table width $/ \mathrm{x}$ * 100

listiogram \& bar charts

Histograms and barcharts

Used to display the distribution of a variable

Categorical variable \rightarrow bar chart
Continuous variable \rightarrow histogram

Examples

```
# With only one variable, qplot guesses that
# you want a bar chart or histogram
qplot(cut, data = diamonds)
qplot(carat, data = diamonds)
qplot(carat, data = diamonds, binwidth = 1)
qplot(carat, data = diamonds, binwidth = 0.1)
qplot(carat, data = diamonds, binwidth = 0.01)
resolution(diamonds$carat)
last_plot() + xlim(0, 3)
```


Examples

```
# With only one variable, qplot guesses that
# you want a bar chart or histogram
qplot(cut, data = diamonds)
qplot(carat, data = diamonds)
qplot(carat data = diamonds, binwidth = 1)
qplot Common ggplot2 amonds, binwidth = 0.1)
qplot technique: adding mmonds, binwidth = 0.01)
resol (\begin{array}{l}{\mathrm{ together plot -at)}}\\{\mathrm{ components }}\end{array})\mathrm{ (a)}
last_plot() + xlim(0, 3)
```

> Always experiment with the bin width!
qplot(table, data = diamonds, binwidth = 1)
\# To zoom in on a plot region use xlim() and ylim() qplot(table, data = diamonds, binwidth = 1) + $x \lim (50,70)$
qplot(table, data = diamonds, binwidth = 0.1) + $x \lim (50,70)$
qplot(table, data = diamonds, binwidth = 0.1) + xlim(50, 70) + ylim(0, 50)
\# Note that this type of zooming discards data outside of the plot regions
\# See coord_cartesian() for an alternative

Additional variables

As with scatterplots can use aesthetics or faceting. Using aesthetics creates pretty, but ineffective, plots.

The following examples show the difference, when investigation the relationship between cut and depth.

Your turn

Explore the distribution of price.
How does it vary with colour, or cut, and clarity?

Practice zooming in on regions of interest.

Problems

Each histogram far away from the others, but we know stacking is hard to read \rightarrow use another way of displaying densities

Varying relative abundance makes comparisons difficult \rightarrow rescale to ensure constant area

```
# Large distances make comparisons hard
qplot(price, data = diamonds, binwidth = 500) +
    facet_wrap(~ cut)
# Stacked heights hard to compare
qplot(price, data = diamonds, binwidth = 500, fill = cut)
# Much better - but still have differing relative abundance
qplot(price, data = diamonds, binwidth = 500,
    geom = "freqpoly", colour = cut)
# Instead of displaying count on y-axis, display density
# .. indicates that variable isn't in original data
qplot(price, ..density.., data = diamonds, binwidth = 500,
    geom = "freqpoly", colour = cut)
# To use with histogram, you need to be explicit
qplot(price, ..density.., data = diamonds, binwidth = 500,
    geom = "histogram") + facet_wrap(~ cut)
```


Your turn

Take two minutes to brainstorm possible solutions to the overplotting problem.

Idea	ggplot
Small points	shape = I (".")
Transparency	alpha $=\mathrm{I}(1 / 50)$
Jittering	geom = "jitter"
Smooth curve	geom = "smooth"
2d bins	$\begin{gathered} \hline \text { geom = "bin2d" or } \\ \text { geom = "hex" } \\ \hline \end{gathered}$
Density contours	geom = "density2d"

\# There are two ways to add additional geoms
\# 1) A vector of geom names: qplot(price, carat, data = diamonds, geom $=c(" p o i n t ", \quad$ smooth"))
\# 2) Add on extra geoms qplot(price, carat, data = diamonds) + geom_smooth()
\# This how you get help about a specific geom: \# ?geom_smooth
\# To set aesthetics to a particular value, you need \# to wrap that value in I()
qplot(price, carat, data = diamonds, colour = "blue") qplot(price, carat, data = diamonds, colour = I("blue"))
\# Practical application: varying alpha qplot(price, carat, data = diamonds, alpha = I(1/10)) qplot(price, carat, data = diamonds, alpha = I(1/50)) qplot(price, carat, data = diamonds, alpha = I(1/100)) qplot(price, carat, data = diamonds, alpha = I(1/250))

Your turn

Explore the relationship between carat, price and clarity, using these techniques.
(i.e. make this plot more informative:
qplot $($ carat, price, data $=$ diamonds, colour $=$ clarity $)$)
Which did you find most useful?
qplot(carat, price, data = diamonds, colour = clarity)
qplot(log10(carat), log10(price), data = diamonds, colour = clarity)
qplot(log10(carat), log10(carat / price), data = diamonds, colour = clarity)
qplot(log10(carat), log10(price), data = diamonds, geom = "hex", bins = 10) + facet_wrap(~ clarity) qplot(log10(carat), log10(price), data = diamonds, colour = clarity, geom = "smooth")

wortow

Coding strategy

At the end of each interactive session, you want a summary of everything you did. Two options:

1. Save everything you did with savehistory() then remove the unimportant bits.
2. Build up the important bits as you go. (this is how I work)

Working directory

Set your working directory to specify where files will be loaded from and saved to - all paths are relative to the working directory.

From the terminal (linux or mac): the working directory is the directory you're in when you start R

On windows: File | Change dir.
On the mac: $\mathscr{H}-D$
シ
Data (.civ)
+
Code (.r)
+
Graphics (.lng, .pdf)
+
Written report (.tex)

This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/ 3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

