
August 2011

Hadley Wickham
Assistant Professor / Dobelman Family Junior Chair

Department of Statistics / Rice University

Development best
practices

Thursday, August 11, 2011

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

1. Correct code

2. Maintainable code

3. Fast code

4. Learning more

Thursday, August 11, 2011

Correct code

Thursday, August 11, 2011

Testing

• Focus on debugging, and basic
techniques for making your code more
robust

• Pointers to more info on testing

Thursday, August 11, 2011

Rules of thumb
• Use TRUE and FALSE, not T and F

• Avoid functions that have non-standard
evaluation rules (no subset, with,
transform)

• Avoid functions that can have different
types of output (sapply, always use drop =
FALSE)

• Be explicit about missings.

Thursday, August 11, 2011

Check preconditions

Always best to fail early - as soon as you
know something is wrong.

If you function expects certain types of
input, it’s a good idea to test that they are
as expected. stopifnot is a quick and
dirty way of doing so.

Thursday, August 11, 2011

Take the function on the next page and
make it work more reliably, or at least give
sensible error messages.

Your turn

Thursday, August 11, 2011

col_means <- function(df) {
 numeric <- sapply(df, is.numeric)
 numeric_cols <- df[, numeric]

 data.frame(lapply(numeric_cols, mean))
}

col_means(mtcars)
col_means(mtcars[, 0])
col_means(mtcars[0,])
col_means(mtcars[, "mpg", drop = F])
col_means(1:10)
col_means(as.matrix(mtcars))
col_means(as.list(mtcars))

mtcars2 <- mtcars
mtcars2[-1] <- lapply(mtcars2[-1], as.character)
col_means(mtcars2)

Thursday, August 11, 2011

No peeking until you’ve
made an attempt!

Thursday, August 11, 2011

My solution:

col_means <- function(df) {
 stopifnot(is.data.frame(df))
 if (nrow(df) == 0) return(df)

 numeric <- vapply(df, is.numeric, logical(1))
 numeric_cols <- df[, numeric, drop = FALSE]

 data.frame(lapply(numeric_cols, mean))
}

Thursday, August 11, 2011

• traceback() tells you where the problem is

• browser() starts an interactive debugger
where it’s called

• options(error = recover) starts
interactive debugger automatically on error

• options(warn = 2) turns warnings into
errors so you can find them more easily

Debugging

Thursday, August 11, 2011

Trace

• Allows you to insert code into any
function

• debug() automatically inserts browser(),
debugonce() automatically removes it
after it’s called once.

Thursday, August 11, 2011

Confirmatory programming

Modify and
save code

Reload in R

Does it work?

Write an
automated test

YES

NO

You’re done

Thursday, August 11, 2011

Modify and
save code

Reload in R

Does it work?

Identify the
task

Write an
automated testYES

NO

Exploratory programming

Thursday, August 11, 2011

Other benefits

• Code that can be tested easily, often
has a better, more modular, design

• When you stop working, leave a test
failing. You’ll know what to work on
when you come back

• Make big changes without fear of
accidentally breaking anything

Thursday, August 11, 2011

Testing packages

• RUnit

• svUnit

• testthat

Thursday, August 11, 2011

Why test that?

• Easy transition from informal to formal
tests. Can be used in wide variety of
situations

• Wide range of expectations/assertions

• Fun, colourful output that keeps you
motivated

https://github.com/hadley/devtools/wiki/Testing
Thursday, August 11, 2011

https://github.com/hadley/devtools/wiki/Testing
https://github.com/hadley/devtools/wiki/Testing

http://bit.ly/testthat

Thursday, August 11, 2011

http://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
http://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf

Maintainable
code

Thursday, August 11, 2011

Tips

• Code gets faster as computers get
faster. It never gets correct by itself,
and it never gets more elegant.

• Pick a style guide and stick with it.
https://github.com/hadley/devtools/wiki/Style

• Use source code control

Thursday, August 11, 2011

https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style

More tips

• Rewrite important code - your first
attempt will not usually be the best
approach.

• Use comments to explain why, not
what or how.

Thursday, August 11, 2011

Fast code
Figure out what’s slow.

Speed it up.

Thursday, August 11, 2011

What’s slow?

Thursday, August 11, 2011

RProf

Every interval seconds, writes the call
stack out to a file on disk.

library(ggplot2)

Rprof("4-profile-ggplot2.txt")

qplot(carat, price, data = diamonds)

Rprof(NULL)

Thursday, August 11, 2011

• "ggplot.data.frame" "ggplot" "qplot"

• "<Anonymous>" "set_last_plot" "+.ggplot" "+" "qplot"
• "plot_clone" "+.ggplot" "+" "<Anonymous>" ".Call"

"mapply" "qplot"
• "plot_clone" "+.ggplot" "+" "<Anonymous>" ".Call"

"mapply" "qplot"

• "plot_clone" "+.ggplot" "+" "<Anonymous>" ".Call"
"mapply" "qplot"

• "unlist" "as.vector" "simplify2array" "mapply" "qplot"
• "<Anonymous>" "set_last_plot" "print.ggplot" "print"
• "c" "do.call" "transform.data.frame" "transform"

"facet_map_layout.null" "facet_map_layout" "FUN" "lapply"
"map_layout" "ggplot_build" "print.ggplot" "print"

• "data.frame" "do.call" "transform.data.frame" "transform"
"facet_map_layout.null" "facet_map_layout" "FUN" "lapply"
"map_layout" "ggplot_build" "print.ggplot" "print"

Thursday, August 11, 2011

SummaryRProf summarises in a format that I
don’t find very helpful. I wrote the profr
package to do better.

library(profr)

p <- parse_rprof("4-profile-ggplot2.txt")

OR

p <- profr(print(qplot(carat, price,

 data = diamonds)))

Summarising

Thursday, August 11, 2011

 level f start end time source
1 1 qplot 0.00 0.12 0.12 <NA>
2 1 print 0.12 3.94 3.82 base
3 2 ggplot 0.00 0.02 0.02 <NA>
4 2 + 0.02 0.04 0.02 base
5 2 mapply 0.04 0.12 0.08 base
6 2 print.ggplot 0.12 3.94 3.82 <NA>
7 3 ggplot.data.frame 0.00 0.02 0.02 <NA>
8 3 +.ggplot 0.02 0.04 0.02 <NA>
9 3 .Call 0.04 0.10 0.06 <NA>
10 3 simplify2array 0.10 0.12 0.02 base
11 3 set_last_plot 0.12 0.14 0.02 <NA>
12 3 ggplot_build 0.14 0.78 0.64 <NA>
13 3 ggplotGrob 0.78 1.58 0.80 <NA>
14 3 grid.draw 1.58 3.94 2.36 <NA>
15 4 set_last_plot 0.02 0.04 0.02 <NA>
16 4 <Anonymous> 0.04 0.10 0.06 <NA>
17 4 as.vector 0.10 0.12 0.02 base
18 4 <Anonymous> 0.12 0.14 0.02 <NA>
19 4 map_layout 0.14 0.18 0.04 <NA>
20 4 dlapply 0.18 0.24 0.06 <NA>

head(p, 20)

Thursday, August 11, 2011

plot(p)

0 1 2 3 4

0
5

10
15

20
25

30
35

time

le
ve
l

printprint.ggplotggplot_build ggplotGrob grid.drawMap grid.draw.gTreemapply recordGraphics.Call drawGTree<Anonymous> grid.drawdlply grid.draw.gTreellply recordGraphicsloop_apply drawGTree.Call grid.draw<Anonymous> grid.draw.gTree.fun recordGraphics<Anonymous> drawGTree<Anonymous> grid.drawgrid.draw.grobrecordGraphicsdrawGrobdrawDetailsdrawDetails.pointsgrid.Call.graphics.Call.graphics

Thursday, August 11, 2011

explore(p)

Thursday, August 11, 2011

Thursday, August 11, 2011

Thursday, August 11, 2011

Memory profiling

• gcTorture(T) + RProf
(memory.profiling = T) - gives
minimum memory usage

• Rprofmem() - gives maximum memory
usages

• tracemem(x) - prints message
whenever x is duplicated

Thursday, August 11, 2011

How can you make it
faster?

Thursday, August 11, 2011

Speeding up code
• Avoid common mistakes (see chapters

2-4 on Patrick Burn’s “R inferno” for
good advice)

• Vectorise (vocab)

• Re-think your approach

• Use the byte code compiler

• Rewrite in C, Fortran or C++

Thursday, August 11, 2011

If you know how long your result will be,
preallocate the storage
grow <- function() {
 output <- c()
 for(i in 1:10000) {
 output <- c(output, i ^ 2)
 }
 output
}

preallocate <- function() {

 output <- rep(NA, 10000)
 for(i in 1:10000) {
 output[i] <- i ^ 2
 }
 output
}

library(microbenchmark)
b <- microbenchmark(grow(), preallocate(), times = 10)
print(b, unit = "eps")

Thursday, August 11, 2011

But you should always vectorise (i.e.
push loops into pre-written C) where possible

vectorise <- function() (1:10000) ^ 2
b <- microbenchmark(grow(), preallocate(),
 vectorise(), times = 10)
print(b, unit = "eps")

Key to this technique is building up a good
R vocabulary

Thursday, August 11, 2011

Compare the two methods for growing a
vector on the next slide.

How do they work?

Do they return the same results?

Which is faster? (system.time)

Your turn

Thursday, August 11, 2011

grow2 <- function() {
 set.seed(1000)

 output <- numeric()
 while(sample(1e5, 1) > 1) {
 output <- c(output, 1)
 }
 output
}
double <- function() {
 set.seed(1000)

 output <- rep(NA, 10)
 n <- 10
 i <- 0

 while(sample(1e5, 1) > 1) {
 i <- i + 1
 if (i > n) {
 output <- c(output, rep(NA, n))
 n <- 2 * n
 }
 output[i] <- 1
 }
 output[seq_len(i)]
}

Thursday, August 11, 2011

system.time(g <- grow2())
system.time(d <- double())
all.equal(d, g)

Thursday, August 11, 2011

df <- function() {
 for(i in nrow(mtcars)) {
 mtcars[i, "cyl"] <- mtcars[i, "cyl"] * 2
 }

 mtcars
}

vector <- function() {
 var <- mtcars$cyl

 for(i in nrow(mtcars)) {
 var[i] <- var[i] * 2
 }
 mtcars$cyl <- var
 mtcars
}
b <- microbenchmark(df(), vector())
print(b, unit = "eps")

Thursday, August 11, 2011

vectorise <- function() {
 mtcars$cyl <- 2 * mtcars$cyl
 mtcars
}
apply2 <- function() {
 mtcars$cyl <- vapply(mtcars$cyl, function(x) x *
2, numeric(1))
 mtcars
}

b <- microbenchmark(df(), vector(), apply2(),
vectorise())
print(b, unit = "eps")

Thursday, August 11, 2011

These are microbenchmarks, which test a
very very small specific piece of code.
You must have correctly identified what is
slow before they can be useful.

Caution

Thursday, August 11, 2011

Byte code compiler

• New core package by Luke Tierney

• “Compilation” for R code

• 2-4x speed-up for best case, 20% on
average

• Next version, in 2.14, even better

Thursday, August 11, 2011

Byte code compiler
library(compiler)

grow_c <- cmpfun(grow)
preallocate_c <- cmpfun(preallocate)

b <- microbenchmark(grow(), grow_c(), preallocate(),
preallocate_c(), times = 10)
print(b, unit = "eps")

grow2_c <- cmpfun(grow2)
double_c <- cmpfun(double)
system.time(g <- grow2_c())
system.time(d <- double_c())

Thursday, August 11, 2011

Rcpp

• Package developed by Dirk
Eddelbuettel and Romain Francois

• Makes it easy to connect C++ to R

• http://dirk.eddelbuettel.com/code/
rcpp.html

Thursday, August 11, 2011

http://dirk.eddelbuettel.com/code/rcpp.html
http://dirk.eddelbuettel.com/code/rcpp.html
http://dirk.eddelbuettel.com/code/rcpp.html
http://dirk.eddelbuettel.com/code/rcpp.html

Learning
more

Thursday, August 11, 2011

Within R

Subscribe to R-devel.

Read the source, particularly of the code
and packages that you use most
commonly

Never be satisfied. Concentrated and
reflective practice is key to mastery.

Invest time now to save time later.

Thursday, August 11, 2011

Build your vocab
https://github.com/hadley/devtools/wiki/
vocabulary.

Read R help.

Read R release notes.

Read stackoverflow
http://stackoverflow.com/tags/r

Read the R Journal

Thursday, August 11, 2011

https://github.com/hadley/devtools/wiki/vocabulary
https://github.com/hadley/devtools/wiki/vocabulary
https://github.com/hadley/devtools/wiki/vocabulary
https://github.com/hadley/devtools/wiki/vocabulary
http://stackoverflow.com/tags/r
http://stackoverflow.com/tags/r

Outside R
The structure and interpretation of computer
programs by Harold Abelson and Gerald Jay
Sussman. http://mitpress.mit.edu/sicp/full-text/
book/book.html

Concepts, Techniques and Models of Computer
Programming by Peter van Roy and Sef Haridi.
http://amzn.com/0262220695

The pragmatic programmer, by Andrew Hunt and
David Thomas. http://amzn.com/020161622X

Thursday, August 11, 2011

http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://amzn.com/0262220695?tag=hadlwick-20
http://amzn.com/0262220695?tag=hadlwick-20
http://amzn.com/0262220695?tag=hadlwick-20
http://amzn.com/0262220695?tag=hadlwick-20
http://amzn.com/0262220695
http://amzn.com/0262220695
http://amzn.com/020161622X?tag=hadlwick-20
http://amzn.com/020161622X?tag=hadlwick-20
http://amzn.com/020161622X
http://amzn.com/020161622X

Thursday, August 11, 2011

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United
States License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

Thursday, August 11, 2011

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

