
August 2011

Hadley Wickham
Assistant Professor / Dobelman Family Junior Chair

Department of Statistics / Rice University

Tidy data

Wednesday, August 10, 2011

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

1. What is tidy data?

2. Five common causes of messiness

3. Tidying messy data (x5)

4. stringr review

Wednesday, August 10, 2011

• A step along the road to clean data

• Data that is easy to model, visualise
and aggregate (i.e. works well with lm,
ggplot, and ddply)

• Variables in columns, observations in
rows, one type per dataset

What is tidy data?

Wednesday, August 10, 2011

Pregnant
Not

pregnant

Male 0 5

Female 1 4

There are three variables in this data set.
What are they?

Wednesday, August 10, 2011

pregnant sex n

no female 4

no male 5

yes female 1

yes male 0

Wednesday, August 10, 2011

Storage Meaning

Table / File Data set

Rows Observations

Columns Variables

Wednesday, August 10, 2011

Common causes of
messiness

• column headers are values, not variable
names

• multiple variables are stored in one column

• variables are stored in both rows and columns

• multiple types of experimental unit stored in
the same table

• one type of experimental unit stored in
multiple tables

Wednesday, August 10, 2011

Tools

library(reshape2)
?melt
?dcast
?col_split

library(stringr)
?str_replace
?str_sub
?str_split_fixed

library(plyr)
?arrange

Wednesday, August 10, 2011

Column headers
values, not

variable names

Wednesday, August 10, 2011

raw <- read.delim("pew.txt", check.names = F,
 stringsAsFactors = F)

head(raw)

What are the variables in this dataset?
Discuss with your neighbour for 1 minute

Wednesday, August 10, 2011

Fixing this problem is easy. We use melt, from
reshape2, with two arguments, the input data, and
the columns which are already variables:

library(reshape2)
tidy <- melt(raw, "religion")

head(tidy)

We can now tweak the variable names
names(tidy) <- c("religion", "income", "n")

Wednesday, August 10, 2011

Multiple
variables in
one column

Wednesday, August 10, 2011

raw <- read.csv("tb.csv", stringsAsFactors = FALSE)
raw$new_sp <- NULL

names(raw) <- str_replace(names(raw), "new_sp_", "")

What are the variables in this dataset?
Discuss with your neighbour for 1 minute
Hint: f = female, u = unknown, 1524 = 15-25

Wednesday, August 10, 2011

Use melt in the same way as for the
religion-income data to get all variables in
columns.

Think about how you might separate the
"variable" variable into age and sex.

Your turn

Wednesday, August 10, 2011

na.rm = TRUE is useful if the missings don't have
any meaning
clean <- melt(raw, id = c("iso2", "year"),
 na.rm = TRUE)
names(clean)[4] <- "cases"

Often a good idea to ensure the rows are ordered
by the variables
clean <- arrange(clean, iso2, variable, year)

Wednesday, August 10, 2011

str_sub(clean$variable, 1, 1)
str_sub(clean$variable, 2)

ages <- c("04" = "0-4", "514" = "5-14", "014" =
"0-14", "1524" = "15-24", "2534" = "25-34", "3544" =
"35-44", "4554" = "45-54", "5564" = "55-64", "65"=
"65+", "u" = NA)
ages[str_sub(clean$variable, 2)]

clean$sex <- str_sub(clean$variable, 1, 1)
clean$age <- factor(ages[str_sub(clean$variable, 2)],
 levels = ages)
clean$variable <- NULL

tidy <- tidy[c("iso2", "year", "sex", "age", "cases")]

Wednesday, August 10, 2011

Variables in
rows and
columns

Wednesday, August 10, 2011

raw <- read.delim("weather.txt",
 stringsAsFactors = FALSE)

What are the variables in this dataset?
Discuss with your neighbour for 1 minute
Hint: TMIN = minimum temperature,
id = weather station identifier

Wednesday, August 10, 2011

Melt the data, clean variables, and reorder
rows and columns.

What do you need to do next?

Your turn

Wednesday, August 10, 2011

raw1 <- melt(raw, id = 1:4, na.rm = T)
raw1$day <- as.integer(
 str_replace(raw1$variable, "d", ""))
raw1$variable <- NULL
raw1$element <- tolower(raw1$element)

raw1 <- raw1[c("id", "year", "month", "day",
 "element", "value")]
raw1 <- arrange(raw1, year, month, day, element)

Wednesday, August 10, 2011

dcast shifts variables from rows to columns
tidy <- dcast(raw1, ... ~ element)

casting syntax:
row_var1 + row_var2 ~ col_var1 + col_var2
... = all variables not otherwise mentioned

Wednesday, August 10, 2011

Multiple
types in the
same table

Wednesday, August 10, 2011

Your turn

Practice everything you’ve learned so far
to clean up billboard.csv.

(You might want to peek in billboard-
encoding.r)

Wednesday, August 10, 2011

raw <- read.csv("billboard.csv",
 stringsAsFactors = F)
raw$date.peaked <- NULL
raw$artist.inverted <- iconv(raw$artist.inverted,
 "MAC", "UTF-8")
raw$track <- str_replace(raw$track,
 " \\(.*?\\)", "")
names(raw)[-(1:6)] <- str_c(1:76)

tidy <- melt(raw, 1:6, na.rm = T)
tidy$week <- as.integer(tidy$variable)
tidy$variable <- NULL

Wednesday, August 10, 2011

Fix dates (bonus)
library(lubridate)
tidy$date.entered <- ymd(tidy$date.entered)
tidy$date <- tidy$date.entered +
 weeks(tidy$week - 1)
tidy$date.entered <- NULL

Tidy column names, order and row order
tidy <- rename(tidy, c("value" = "rank",
 "artist.inverted" = "artist"))
tidy <- tidy[c("year", "artist", "track", "time",
 "genre", "week", "date", "rank")]
tidy <- arrange(tidy, year, artist, track, week)

Wednesday, August 10, 2011

Each fact about a song is repeated many
many times. Sign that multiple types of
experimental unit stored in the same
table.

Need to separate out into song and rank
tables.

Normalisation

Wednesday, August 10, 2011

song <- unrowname(unique(tidy[c("artist", "track",
"genre", "time")]))
song$song_id <- 1:nrow(song)

rank <- join(tidy, song, match = "first")
rank <- rank[c("song_id", "date", "rank")]

Wednesday, August 10, 2011

One type in
multiple tables

Wednesday, August 10, 2011

Not shown, but easy with ldply
files <- dir("path", pattern = ".csv", full = T)
names(files) <- basename(files)

all <- ldply(files, read.csv)

Wednesday, August 10, 2011

stringr
review

http://bit.ly/stringr

Wednesday, August 10, 2011

http://bit.ly/stringr
http://bit.ly/stringr

Function Parameters Result

str_detect string, pattern logical vector

str_locate string, pattern numeric matrix

str_extract string, pattern character vector

str_replace string, pattern,
replacement

character vector

str_split_fixed string, pattern character matrix

Wednesday, August 10, 2011

Single Multiple
(output usually a list)

str_detect

str_locate str_locate_all

str_extract str_extract_all

str_replace str_replace_all

str_split_fixed str_split

Wednesday, August 10, 2011

Regular expressions

If you work with text data, I highly
recommend learning at least a little about
regular expressions.

They are complex, but very powerful.

Wednesday, August 10, 2011

Wednesday, August 10, 2011

Special characters
a <- "\\"
b <- "\""
c <- "a\nb\nc"

a
cat(a, "\n")
b
cat(b, "\n")
c
cat(c, "\n")

Wednesday, August 10, 2011

Special characters
• Use \ to “escape” special characters

• \" = "

• \n = new line

• \\ = \

• \t = tab

• ?Quotes for more

Wednesday, August 10, 2011

Useful tools

• http://gskinner.com/RegExr/

• http://regexp.resource.googlepages.com/
analyzer.html

• http://www.txt2re.com/

• http://www.regular-expressions.info/
reference.html

Wednesday, August 10, 2011

http://gskinner.com/RegExr/
http://gskinner.com/RegExr/
http://regexp.resource.googlepages.com/analyzer.html
http://regexp.resource.googlepages.com/analyzer.html
http://regexp.resource.googlepages.com/analyzer.html
http://regexp.resource.googlepages.com/analyzer.html
http://www.txt2re.com
http://www.txt2re.com
http://www.regular-expressions.info/reference.html
http://www.regular-expressions.info/reference.html
http://www.regular-expressions.info/reference.html
http://www.regular-expressions.info/reference.html

Wednesday, August 10, 2011

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United
States License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

Wednesday, August 10, 2011

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

