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1. What is tidy data?

2. Five common causes of messiness

3. Tidying messy data (x5)

4. stringr review
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• A step along the road to clean data

• Data that is easy to model, visualise 
and aggregate (i.e. works well with lm, 
ggplot, and ddply)

• Variables in columns, observations in 
rows, one type per dataset

What is tidy data?
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Pregnant
Not 

pregnant

Male 0 5

Female 1 4

There are three variables in this data set.
What are they?
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pregnant sex n

no female 4

no male 5

yes female 1

yes male 0
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Storage Meaning

Table / File Data set

Rows Observations

Columns Variables
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Common causes of 
messiness

• column headers are values, not variable 
names 

• multiple variables are stored in one column 

• variables are stored in both rows and columns 

• multiple types of experimental unit stored in 
the same table 

• one type of experimental unit stored in 
multiple tables
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# Tools

library(reshape2)
?melt
?dcast
?col_split

library(stringr)
?str_replace
?str_sub
?str_split_fixed

library(plyr)
?arrange
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Column headers 
values, not 

variable names 
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raw <- read.delim("pew.txt", check.names = F,
 stringsAsFactors = F)

head(raw)

# What are the variables in this dataset?
# Discuss with your neighbour for 1 minute
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# Fixing this problem is easy.  We use melt, from 
# reshape2, with two arguments, the input data, and 
# the columns which are already variables:

library(reshape2)
tidy <- melt(raw, "religion")

head(tidy)

# We can now tweak the variable names
names(tidy) <- c("religion", "income", "n")
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Multiple 
variables in 
one column 
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raw <- read.csv("tb.csv", stringsAsFactors = FALSE)
raw$new_sp <- NULL

names(raw) <- str_replace(names(raw), "new_sp_", "")

# What are the variables in this dataset?
# Discuss with your neighbour for 1 minute
# Hint: f = female, u = unknown, 1524 = 15-25
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Use melt in the same way as for the 
religion-income data to get all variables in 
columns.

Think about how you might separate the 
"variable" variable into age and sex.

Your turn
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# na.rm = TRUE is useful if the missings don't have
# any meaning 
clean <- melt(raw, id = c("iso2", "year"), 
  na.rm = TRUE)
names(clean)[4] <- "cases"

# Often a good idea to ensure the rows are ordered
# by the variables
clean <- arrange(clean, iso2, variable, year)
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str_sub(clean$variable, 1, 1)
str_sub(clean$variable, 2)

ages <- c("04" = "0-4", "514" = "5-14", "014" = 
"0-14", "1524" = "15-24", "2534" = "25-34", "3544" = 
"35-44", "4554" = "45-54", "5564" = "55-64", "65"= 
"65+", "u" = NA)
ages[str_sub(clean$variable, 2)]

clean$sex <- str_sub(clean$variable, 1, 1)
clean$age <- factor(ages[str_sub(clean$variable, 2)],
   levels = ages)
clean$variable <- NULL

tidy <- tidy[c("iso2", "year", "sex", "age", "cases")]
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Variables in 
rows and 
columns 
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raw <- read.delim("weather.txt", 
  stringsAsFactors = FALSE)

# What are the variables in this dataset?
# Discuss with your neighbour for 1 minute
# Hint: TMIN = minimum temperature, 
#       id = weather station identifier
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Melt the data, clean variables, and reorder 
rows and columns.

What do you need to do next?

Your turn
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raw1 <- melt(raw, id = 1:4, na.rm = T)
raw1$day <- as.integer(
  str_replace(raw1$variable, "d", ""))
raw1$variable <- NULL
raw1$element <- tolower(raw1$element)

raw1 <- raw1[c("id", "year", "month", "day", 
  "element", "value")]
raw1 <- arrange(raw1, year, month, day, element)
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# dcast shifts variables from rows to columns
tidy <- dcast(raw1, ... ~ element)

# casting syntax:
#   row_var1 + row_var2 ~ col_var1 + col_var2
#   ... = all variables not otherwise mentioned
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Multiple 
types in the 
same table
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Your turn

Practice everything you’ve learned so far 
to clean up billboard.csv.

(You might want to peek in billboard-
encoding.r)

Wednesday, August 10, 2011



raw <- read.csv("billboard.csv", 
  stringsAsFactors = F)
raw$date.peaked <- NULL
raw$artist.inverted <- iconv(raw$artist.inverted,
  "MAC", "UTF-8")
raw$track <- str_replace(raw$track, 
  " \\(.*?\\)", "")
names(raw)[-(1:6)] <- str_c(1:76)

tidy <- melt(raw, 1:6, na.rm = T)
tidy$week <- as.integer(tidy$variable)
tidy$variable <- NULL
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# Fix dates (bonus)
library(lubridate)
tidy$date.entered <- ymd(tidy$date.entered)
tidy$date <- tidy$date.entered + 
  weeks(tidy$week - 1)
tidy$date.entered <- NULL

# Tidy column names, order and row order
tidy <- rename(tidy, c("value" = "rank", 
  "artist.inverted" = "artist"))
tidy <- tidy[c("year", "artist", "track", "time",
   "genre", "week", "date", "rank")]
tidy <- arrange(tidy, year, artist, track, week)
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Each fact about a song is repeated many 
many times. Sign that multiple types of 
experimental unit stored in the same 
table.

Need to separate out into song and rank 
tables.

Normalisation
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song <- unrowname(unique(tidy[c("artist", "track", 
"genre", "time")]))
song$song_id <- 1:nrow(song)

rank <- join(tidy, song, match = "first")
rank <- rank[c("song_id", "date", "rank")]
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One type in 
multiple tables
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# Not shown, but easy with ldply
files <- dir("path", pattern = ".csv", full = T)
names(files) <- basename(files)

all <- ldply(files, read.csv)
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stringr 
review

http://bit.ly/stringr  
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Function Parameters Result

str_detect string, pattern logical vector

str_locate string, pattern numeric matrix

str_extract string, pattern character vector

str_replace string, pattern, 
replacement

character vector

str_split_fixed string, pattern character matrix
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Single Multiple 
(output usually a list)

str_detect

str_locate str_locate_all

str_extract str_extract_all

str_replace str_replace_all

str_split_fixed str_split
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Regular expressions

If you work with text data, I highly 
recommend learning at least a little about 
regular expressions.

They are complex, but very powerful.
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# Special characters
a <- "\\"
b <- "\""
c <- "a\nb\nc"

a
cat(a, "\n")
b
cat(b, "\n")
c
cat(c, "\n")
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Special characters
• Use \ to “escape” special characters

• \" = "

• \n = new line

• \\ = \

• \t = tab

• ?Quotes for more
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Useful tools

• http://gskinner.com/RegExr/

• http://regexp.resource.googlepages.com/
analyzer.html

• http://www.txt2re.com/

• http://www.regular-expressions.info/
reference.html
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This work is licensed under the Creative 
Commons Attribution-Noncommercial 3.0 United 
States License. To view a copy of this license, 
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons, 
171 Second Street, Suite 300, San Francisco, 
California, 94105, USA.
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