
August 2011

Hadley Wickham
Assistant Professor / Dobelman Family Junior Chair

Department of Statistics / Rice University

Group-wise
modelling

Wednesday, August 10, 2011

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

Wednesday, August 10, 2011

nasa <- glyphs(nasa, "long", "day", "lat", "surftemp")
qplot(gx, gy, data = nasa, geom = "path", group = id) + map
Wednesday, August 10, 2011

nasa <- glyphs(nasa, "long", "day", "lat", "surftemp")
qplot(gx, gy, data = nasa, geom = "path", group = id) + map

How can we make
sense of this huge

quantity of data?

Wednesday, August 10, 2011

Data

• 24 x 24 grid, 72 time points = 41,472
observations

• 7 meteorological variables

• We’re just going to focus on surface
temperature (surftemp)

Wednesday, August 10, 2011

1. Introduction to models in R

2. Advanced aggregation: fitting a
model to each location

3. Extracting coefficients

4. Making predictions

5. Viewing residuals

6. Collating summary statistics

Wednesday, August 10, 2011

Get started by loading libraries, data
and the glyph function

library("ggplot2")
library("mgcv")

source("glyphs.r")
source("06-nasa.r")

nasa <- glyphs(nasa, "long", "day",
 "lat", "surftemp")
qplot(gx, gy, data = nasa, geom = "path",
 group = id) + map

Wednesday, August 10, 2011

Modelling
basics

Wednesday, August 10, 2011

response ~ predictor
lm(surftemp ~ year, data = nasa)

use factor to force a categorical predictor
matrix of dummy variables is made automatically
lm(surftemp ~ factor(month), data = nasa)

default output is minimal. Use functions to
extract to extract more details
mod <- lm(surftemp ~ factor(month), data = nasa)

summary(mod); anova(mod); coef(mod)
predict(mod); resid(mod)
vcov(mod)

Wednesday, August 10, 2011

Can you work out what +, : and * do?

lm(surftemp ~ factor(month) + year,
 data = nasa)
lm(surftemp ~ factor(month):year,
 data = nasa)
lm(surftemp ~ factor(month) * year,
 data = nasa)

Your turn

Wednesday, August 10, 2011

+ adds more predictors
lm(surftemp ~ factor(month) + year, data = nasa)

: makes an interaction
lm(surftemp ~ factor(month):year, data = nasa)

* adds main effects and interactions
lm(surftemp ~ factor(month) * year, data = nasa)

Wednesday, August 10, 2011

Per-location
models

Wednesday, August 10, 2011

Wednesday, August 10, 2011

Challenge
Fit a model to each location then visualise
model summaries.

Similar to the summaries we did with ddply,
but we’ll do it in two steps. 1) Create a
model for each location 2) Extract
summaries

Requires two new functions: dlply and
ldply. l is short for list

Wednesday, August 10, 2011

dlply works like ddply, but instead of a data frame
it returns a LIST

temp_models <- dlply(nasa, c("lat", "long"), function(df) {
 lm(surftemp ~ factor(month), data = df)
})

You can also try out this model:
lm(surftemp ~ factor(month) - 1, data = df)
What's the difference?

Wednesday, August 10, 2011

Using what you know about data
structures, subsetting and models:

Explore the temp_models object. What is
it?

View the model summary of the 1st model

Extract the residuals from the 7th model

Your turn

Wednesday, August 10, 2011

temp_models[1:10]
length(temp_models)
temp_models[[1]]
summary(temp_models[[1]])
anova(temp_models[[1]])
coef(temp_models[[1]])
resid(temp_models[[1]])

Wednesday, August 10, 2011

We have one model for each location.

Next we’ll compute and visualise
coefficients, predictions, residuals and
summary statistics.

Next

Wednesday, August 10, 2011

Coefficients

Wednesday, August 10, 2011

ldply is the inverse of dlply - it takes a list
and combines the output into a data frame

coefs <- ldply(temp_models, coef)

Wednesday, August 10, 2011

coef doesn't provide the data in quite the
right format. We want a column for
month, and a column for the seasonal
effect. How can you compute that from
the model?

Hint: Experiment with one model
one <- temp_models[[1]]

Your turn

Wednesday, August 10, 2011

one <- temp_models[[1]]
coef(one)
cf <- coef(one)

as.data.frame(cf)
data.frame(coef = names(cf), value = cf)
data.frame(month = 2:12, coef = cf[-1])

Wednesday, August 10, 2011

coefs <- ldply(temp_models, function(x) {
 data.frame(month = 2:12, coef = coef(x)[-1])
})

qplot(gx, gy, data = coefs, geom = "line", group = gid) + map

Wednesday, August 10, 2011

Wednesday, August 10, 2011

Strongest seasonal patterns in NW
Pattern flipped between N & S
Wednesday, August 10, 2011

Predictions

Wednesday, August 10, 2011

Predictions

Typically coefficients are not that useful -
they’re fiddly to extract correctly, and not
always interpretable

Often better to visualise predictions from
the model.

Three steps: 1) model, 2) build prediction
grid, 3) make predictions

Wednesday, August 10, 2011

Slightly more sophisticated model:
seasonal effect + (very) smooth long term trend

temp_models <- dlply(nasa, c("lat", "long"), function(df) {
 lm(surftemp ~ year + factor(month), data = df)
})

Model

Wednesday, August 10, 2011

To explore long-term trend, hold month
constant:
year_grid <- expand.grid(
 year = unique(nasa$year),
 month = 1)

To explore seasonal trend, hold year constant:
month_grid <- expand.grid(
 year = 2000,
 month = 1:12)

Make grid
Don’t need

expand.grid here, but

is useful generally

Wednesday, August 10, 2011

Make predictions
month_preds <- ldply(temp_models, function(mod) {
 month_grid$pred <- predict(mod, newdata = month_grid)
 month_grid
})
year_preds <- ldply(temp_models, function(mod) {
 year_grid$pred <- predict(mod, newdata = year_grid)
 year_grid
})

head(month_preds)
head(year_preds)

Wednesday, August 10, 2011

Your turn

Work through the code yourself and then
visualise the results.

How does the seasonal pattern compare
to the previous plots?

What do you learn about the long-term
trend?

Wednesday, August 10, 2011

Wednesday, August 10, 2011

Wednesday, August 10, 2011

month_preds <- glyphs(month_preds, "long", "month",
 "lat", "pred")
year_preds <- glyphs(year_preds, "long", "year",
 "lat", "pred")

qplot(gx, gy, data = month_preds, geom = "path",
 group = gid) + map
qplot(gx, gy, data = year_preds, geom = "path",
 group = gid) + map

Wednesday, August 10, 2011

This technique easily generalises to more
sophisticated models.

Instead of a linear long-term trend, we
can use a generalised additive model to
fit a smooth long-term trend.

More models

Wednesday, August 10, 2011

temp_smooth <- dlply(nasa, c("lat", "long"), function(df) {
 gam(surftemp ~ s(day) + factor(month), data = df)
})
day_grid <- expand.grid(day = seq(0, 2161, length = 50), month = 1)
day_preds <- ldply(temp_smooth, function(mod) {
 day_grid$pred <- predict(mod, newdata = day_grid)
 day_grid
})
day_preds <- glyphs(day_preds, "long", "day", "lat", "pred")
qplot(gx, gy, data = day_preds, geom = "path", group = gid) + map

Wednesday, August 10, 2011

Linear trend misses
important patterns

Wednesday, August 10, 2011

Residuals

Wednesday, August 10, 2011

Model checking

Instead of fitting a more complicated
model, we could have detected a problem
by looking at the residuals for each model
in temp_smooth.

Extracting residuals is more complicated
to extract because you need pair up the
original data with the corresponding
model

Wednesday, August 10, 2011

locs <- dlply(nasa, c("lat", "long"))

mdply allows us to supply multiple arguments to
the summary function - pairing data and model
resids <- mdply(cbind(d = locs, m = temp_models), function(d, m) {
 d$temp_resid <- d$temp - predict(m, newdata = d)
 d
})

resids <- glyphs(resids, "long", "day", "lat", "temp_resid")
qplot(gx, gy, data = resids, geom = "line", group = gid) + map

Wednesday, August 10, 2011

Raw data

Wednesday, August 10, 2011

Residuals

Wednesday, August 10, 2011

Summary
statistics

Wednesday, August 10, 2011

Your turn

How can you extract the r-squared from a
single model? How can you extract it
from all models and store in a data
frame?

(Hint: use summary + str)

Wednesday, August 10, 2011

rsq <- function(mod) summary(mod)$r.squared
rsqs <- ldply(temp_models, rsq)

qplot(long, lat, data = rsqs, fill = V1, geom =
"tile") + map

Wednesday, August 10, 2011

Wednesday, August 10, 2011

Wednesday, August 10, 2011

Wednesday, August 10, 2011

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United
States License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

Wednesday, August 10, 2011

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

