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nasa <- glyphs(nasa, "long", "day", "lat", "surftemp") 
qplot(gx, gy, data = nasa, geom = "path", group = id) + map
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nasa <- glyphs(nasa, "long", "day", "lat", "surftemp") 
qplot(gx, gy, data = nasa, geom = "path", group = id) + map

How can we make 
sense of this huge 

quantity of data?

Wednesday, August 10, 2011



Data

• 24 x 24 grid, 72 time points = 41,472 
observations 

• 7 meteorological variables

• We’re just going to focus on surface 
temperature (surftemp)
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1. Introduction to models in R

2. Advanced aggregation: fitting a 
model to each location

3. Extracting coefficients

4. Making predictions

5. Viewing residuals

6. Collating summary statistics
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# Get started by loading libraries, data
# and the glyph function

library("ggplot2")
library("mgcv")

source("glyphs.r")
source("06-nasa.r")

nasa <- glyphs(nasa, "long", "day", 
  "lat", "surftemp") 
qplot(gx, gy, data = nasa, geom = "path", 
  group = id) + map
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Modelling 
basics
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# response ~ predictor
lm(surftemp ~ year, data = nasa)

# use factor to force a categorical predictor
# matrix of dummy variables is made automatically
lm(surftemp ~ factor(month), data = nasa)

# default output is minimal. Use functions to 
# extract to extract more details
mod <- lm(surftemp ~ factor(month), data = nasa)

summary(mod); anova(mod); coef(mod)
predict(mod); resid(mod)
vcov(mod)
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Can you work out what +, : and * do?

lm(surftemp ~ factor(month) + year, 
  data = nasa)
lm(surftemp ~ factor(month):year, 
  data = nasa)
lm(surftemp ~ factor(month) * year, 
  data = nasa)

Your turn
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# + adds more predictors
lm(surftemp ~ factor(month) + year, data = nasa)

# : makes an interaction
lm(surftemp ~ factor(month):year, data = nasa)

# * adds main effects and interactions
lm(surftemp ~ factor(month) * year, data = nasa)
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Per-location 
models
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Challenge
Fit a model to each location then visualise 
model summaries.

Similar to the summaries we did with ddply, 
but we’ll do it in two steps. 1) Create a 
model for each location 2) Extract 
summaries

Requires two new functions: dlply and 
ldply. l is short for list
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# dlply works like ddply, but instead of a data frame
# it returns a LIST

temp_models <- dlply(nasa, c("lat", "long"), function(df) {
  lm(surftemp ~ factor(month), data = df)
})

# You can also try out this model:
# lm(surftemp ~ factor(month) - 1, data = df)
# What's the difference?
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Using what you know about data 
structures, subsetting and models:

Explore the temp_models object.  What is 
it?

View the model summary of the 1st model

Extract the residuals from the 7th model

Your turn
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temp_models[1:10]
length(temp_models)
temp_models[[1]]
summary(temp_models[[1]])
anova(temp_models[[1]])
coef(temp_models[[1]])
resid(temp_models[[1]])
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We have one model for each location. 

Next we’ll compute and visualise 
coefficients, predictions, residuals and 
summary statistics.

Next
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Coefficients
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# ldply is the inverse of dlply - it takes a list 
# and combines the output into a data frame

coefs <- ldply(temp_models, coef)
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coef doesn't provide the data in quite the 
right format. We want a column for 
month, and a column for the seasonal 
effect. How can you compute that from 
the model?

Hint: Experiment with one model
one <- temp_models[[1]]

Your turn

Wednesday, August 10, 2011



one <- temp_models[[1]]
coef(one)
cf <- coef(one)

as.data.frame(cf)
data.frame(coef = names(cf), value = cf)
data.frame(month = 2:12, coef = cf[-1])
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coefs <- ldply(temp_models, function(x) {
  data.frame(month = 2:12, coef = coef(x)[-1])
})

qplot(gx, gy, data = coefs, geom = "line", group = gid) + map 
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Strongest seasonal patterns in NW
Pattern flipped between N & S
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Predictions
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Predictions

Typically coefficients are not that useful - 
they’re fiddly to extract correctly, and not 
always interpretable 

Often better to visualise predictions from 
the model.

Three steps: 1) model, 2) build prediction 
grid, 3) make predictions
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# Slightly more sophisticated model:
# seasonal effect + (very) smooth long term trend

temp_models <- dlply(nasa, c("lat", "long"), function(df) {
  lm(surftemp ~ year + factor(month), data = df)
})

Model
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# To explore long-term trend, hold month 
# constant:
year_grid <- expand.grid(
  year = unique(nasa$year), 
  month = 1)

# To explore seasonal trend, hold year constant:
month_grid <- expand.grid(
  year = 2000, 
  month = 1:12)

Make grid
Don’t need 

expand.grid here, but 

is useful generally
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Make predictions
month_preds <- ldply(temp_models, function(mod) {
  month_grid$pred <- predict(mod, newdata = month_grid)
  month_grid
})
year_preds <- ldply(temp_models, function(mod) {
  year_grid$pred <- predict(mod, newdata = year_grid)
  year_grid
})

head(month_preds)
head(year_preds)
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Your turn 

Work through the code yourself and then 
visualise the results.  

How does the seasonal pattern compare 
to the previous plots?

What do you learn about the long-term 
trend?
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month_preds <- glyphs(month_preds, "long", "month",
  "lat", "pred") 
year_preds <- glyphs(year_preds, "long", "year", 
  "lat", "pred") 

qplot(gx, gy, data = month_preds, geom = "path", 
  group = gid) + map 
qplot(gx, gy, data = year_preds, geom = "path", 
  group = gid) + map 
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This technique easily generalises to more 
sophisticated models.

Instead of a linear long-term trend, we 
can use a generalised additive model to 
fit a smooth long-term trend.

More models
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temp_smooth <- dlply(nasa, c("lat", "long"), function(df) {
  gam(surftemp ~ s(day) + factor(month), data = df)
})
day_grid <- expand.grid(day = seq(0, 2161, length = 50), month = 1)
day_preds <- ldply(temp_smooth, function(mod) {
  day_grid$pred <- predict(mod, newdata = day_grid)
  day_grid
})
day_preds <- glyphs(day_preds, "long", "day", "lat", "pred") 
qplot(gx, gy, data = day_preds, geom = "path", group = gid) + map 
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Linear trend misses 
important patterns
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Residuals
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Model checking

Instead of fitting a more complicated 
model, we could have detected a problem 
by looking at the residuals for each model 
in temp_smooth. 

Extracting residuals is more complicated 
to extract because you need pair up the 
original data with the corresponding 
model
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locs <- dlply(nasa, c("lat", "long"))

# mdply allows us to supply multiple arguments to 
# the summary function - pairing data and model
resids <- mdply(cbind(d = locs, m = temp_models), function(d, m) {
  d$temp_resid <- d$temp - predict(m, newdata = d)
  d
})

resids <- glyphs(resids, "long", "day", "lat", "temp_resid") 
qplot(gx, gy, data = resids, geom = "line", group = gid) + map
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Raw data
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Residuals
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Summary 
statistics
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Your turn

How can you extract the r-squared from a 
single model? How can you extract it 
from all models and store in a data 
frame?

(Hint: use summary + str)

Wednesday, August 10, 2011



rsq <- function(mod) summary(mod)$r.squared
rsqs <- ldply(temp_models, rsq)

qplot(long, lat, data = rsqs, fill = V1, geom = 
"tile") + map
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