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Correct code
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Testing

• Will focus on systematic unit testing 
tomorrow afternoon

• Today we’ll discuss debugging, and 
basic techniques for making your code 
more robust
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Rules of thumb
• Use TRUE and FALSE, not T and F

• Avoid functions that have non-standard 
evaluation rules (no subset, with, 
transform)

• Avoid functions that can have different 
types of output (sapply, always use drop = 
FALSE)

• Be explicit about missings.
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Check preconditions

Always best to fail early - as soon as you 
know something is wrong.

If you function expects certain types of 
input, it’s a good idea to test that they are 
as expected.  stopifnot is a quick and 
dirty way of doing so.
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Take the function on the next page and 
make it work more reliably, or at least give 
sensible error messages.

Your turn
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col_means <- function(df) {
  numeric <- sapply(df, is.numeric)
  numeric_cols <- df[, numeric]
  
  data.frame(lapply(numeric_cols, mean))
}

col_means(mtcars)
col_means(mtcars[, 0])
col_means(mtcars[0, ])
col_means(mtcars[, "mpg", drop = F])
col_means(1:10)
col_means(as.matrix(mtcars))
col_means(as.list(mtcars))

mtcars2 <- mtcars
mtcars2[-1] <- lapply(mtcars2[-1], as.character)
col_means(mtcars2)
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No peeking until you’ve 
made an attempt!
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My solution:

col_means <- function(df) {
  stopifnot(is.data.frame(df))
  if (nrow(df) == 0) return(df)
  
  numeric <- vapply(df, is.numeric, logical(1))
  numeric_cols <- df[, numeric, drop = FALSE]
  
  data.frame(lapply(numeric_cols, mean))
}
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• traceback() tells you where the problem is

• browser() starts an interactive debugger 
where it’s called

• options(error = recover) starts 
interactive debugger automatically on error

• options(warn = 2) turns warnings into 
errors so you can find them more easily

Debugging
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Trace

• Allows you to insert code into any 
function

• debug() automatically inserts browser(), 
debugonce() automatically removes it 
after it’s called once.
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Maintainable 
code
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Tips

• Code gets faster as computers get 
faster.  It never gets correct by itself, 
and it never gets more elegant.

• Pick a style guide and stick with it.
https://github.com/hadley/devtools/wiki/Style 

• Use source code control 
(more on that tomorrow)
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More tips

• Rewrite important code - your first 
attempt will not usually be the best 
approach.

• Use comments to explain why, not 
what or how.
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Fast code
Figure out what’s slow.

Speed it up.
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What’s slow?
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RProf

Every interval seconds, writes the call 
stack out to a file on disk.

library(ggplot2)

Rprof("4-profile-ggplot2.txt")

qplot(carat, price, data = diamonds)

Rprof(NULL)
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• "ggplot.data.frame" "ggplot" "qplot" 

• "<Anonymous>" "set_last_plot" "+.ggplot" "+" "qplot" 
• "plot_clone" "+.ggplot" "+" "<Anonymous>" ".Call" 

"mapply" "qplot" 
• "plot_clone" "+.ggplot" "+" "<Anonymous>" ".Call" 

"mapply" "qplot" 

• "plot_clone" "+.ggplot" "+" "<Anonymous>" ".Call" 
"mapply" "qplot" 

• "unlist" "as.vector" "simplify2array" "mapply" "qplot" 
• "<Anonymous>" "set_last_plot" "print.ggplot" "print" 
• "c" "do.call" "transform.data.frame" "transform" 

"facet_map_layout.null" "facet_map_layout" "FUN" "lapply" 
"map_layout" "ggplot_build" "print.ggplot" "print" 

• "data.frame" "do.call" "transform.data.frame" "transform" 
"facet_map_layout.null" "facet_map_layout" "FUN" "lapply" 
"map_layout" "ggplot_build" "print.ggplot" "print" 
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SummaryRProf summarises in a format that I 
don’t find very helpful. I wrote the profr 
package to do better.

library(profr)

p <- parse_rprof("4-profile-ggplot2.txt")

# OR 

p <- profr(print(qplot(carat, price, 

  data = diamonds)))

Summarising
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   level                 f start  end time source
1      1             qplot  0.00 0.12 0.12   <NA>
2      1             print  0.12 3.94 3.82   base
3      2            ggplot  0.00 0.02 0.02   <NA>
4      2                 +  0.02 0.04 0.02   base
5      2            mapply  0.04 0.12 0.08   base
6      2      print.ggplot  0.12 3.94 3.82   <NA>
7      3 ggplot.data.frame  0.00 0.02 0.02   <NA>
8      3          +.ggplot  0.02 0.04 0.02   <NA>
9      3             .Call  0.04 0.10 0.06   <NA>
10     3    simplify2array  0.10 0.12 0.02   base
11     3     set_last_plot  0.12 0.14 0.02   <NA>
12     3      ggplot_build  0.14 0.78 0.64   <NA>
13     3        ggplotGrob  0.78 1.58 0.80   <NA>
14     3         grid.draw  1.58 3.94 2.36   <NA>
15     4     set_last_plot  0.02 0.04 0.02   <NA>
16     4       <Anonymous>  0.04 0.10 0.06   <NA>
17     4         as.vector  0.10 0.12 0.02   base
18     4       <Anonymous>  0.12 0.14 0.02   <NA>
19     4        map_layout  0.14 0.18 0.04   <NA>
20     4           dlapply  0.18 0.24 0.06   <NA>

head(p, 20)
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plot(p)
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explore(p)
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Memory profiling

• gcTorture(T) + RProf
(memory.profiling = T) - gives 
minimum memory usage

• Rprofmem() - gives maximum memory 
usages

• tracemem(x) - prints message 
whenever x is duplicated
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How can you make it 
faster?
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Speeding up code

• Avoid common mistakes (see chapters 
2-4 on Patrick Burn’s “R inferno” for 
good advice)

• Vectorise (vocab)

• Re-think your approach

• Rewrite in C, Fortran or C++
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# If you know how long your result will be,
# preallocate the storage
grow <- function() {
  output <- c()
  for(i in 1:100) {
    output <- c(output, i ^ 2)
  }
  output  
}

preallocate <- function() {
  
  output <- rep(NA, 10)
  for(i in 1:100) {
    output[i] <- i ^ 2
  }
  output
}

library(microbenchmark)
b <- microbenchmark(grow(), preallocate())
print(b, unit = "eps")
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# But you should always vectorise (i.e.
# push loops into pre-written C) where possible

vectorise <- function() (1:100) ^ 2
b <- microbenchmark(grow(), preallocate(), 
  vectorise())
print(b, unit = "eps")

# Key to this technique is building up a good 
# R vocabulary
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Compare the two methods for growing a 
vector on the next slide. 

How do they work? 

Do they return the same results? 

Which is faster?

Your turn
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grow2 <- function() {
  set.seed(1000)
  
  output <- numeric()
  while(sample(1e5, 1) > 1) {
    output <- c(output, 1)
  }
  output
}
double <- function() {
  set.seed(1000)

  output <- rep(NA, 10)
  n <- 10
  i <- 0
  
  while(sample(1e5, 1) > 1) {
    i <- i + 1
    if (i > n) {
      output <- c(output, rep(NA, n))
      n <- 2 * n
    }
    output[i] <- 1
  }
  output[seq_len(i)]
}
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system.time(g <- grow2())
system.time(d <- double())
all.equal(d, g)
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df <- function() {
  for(i in nrow(mtcars)) {
    mtcars[i, "cyl"] <- mtcars[i, "cyl"] * 2
  }
  
  mtcars
}

vector <- function() {
  var <- mtcars$cyl
  
  for(i in nrow(mtcars)) {
    var[i] <- var[i] * 2
  }
  mtcars$cyl <- var
  mtcars
}

b <- microbenchmark(df(), vector())
print(b, unit = "eps")
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These are microbenchmarks, which test a 
very very small specific piece of code. 
You must have correctly identified what is 
slow before they can be useful.

Caution
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Learning 
more
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Within R

Subscribe to R-devel.

Read the source, particularly of the code 
and packages that you use most 
commonly

Never be satisfied. Concentrated and 
reflective practice is key to mastery.

Invest time now to save time later.
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Manuals

http://cran.r-project.org/manuals.html

R language definition

R internals
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Build your vocab
https://github.com/hadley/devtools/wiki/
vocabulary.

Read R help.

Read R release notes.

Read stackoverflow 
http://stackoverflow.com/tags/r

Read the R Journal
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Outside R
The structure and interpretation of computer 
programs by Harold Abelson and Gerald Jay 
Sussman. http://mitpress.mit.edu/sicp/full-text/
book/book.html

Concepts, Techniques and Models of Computer 
Programming by Peter van Roy and Sef Haridi. 
http://amzn.com/0262220695 

The pragmatic programmer, by Andrew Hunt and 
David Thomas. http://amzn.com/020161622X
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Tomorrow
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Preparation

Please make sure you are set up for 
developing R packages.

Windows: Install R tools
Mac: Install xcode
Linux: Probably nothing

I’ll be here earlier to help you get set up.
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This work is licensed under the Creative 
Commons Attribution-Noncommercial 3.0 United 
States License. To view a copy of this license, 
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons, 
171 Second Street, Suite 300, San Francisco, 
California, 94105, USA.
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