
June 2011

Hadley Wickham
Assistant Professor / Dobelman Family Junior Chair

Department of Statistics / Rice University

Object oriented
programming

Wednesday, June 1, 2011

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

1. Motivation

2. S3

3. S4

4. R5 (reference classes)

5. Other OO styles

Wednesday, June 1, 2011

Motivation

Wednesday, June 1, 2011

mean(1:10)
mean(mtcars)

What does mean do?
mean

Wednesday, June 1, 2011

sd <- function (x, na.rm = FALSE) {
 if (is.matrix(x))
 apply(x, 2, sd, na.rm = na.rm)
 else if (is.vector(x))
 sqrt(var(x, na.rm = na.rm))
 else if (is.data.frame(x))
 sapply(x, sd, na.rm = na.rm)
 else sqrt(var(as.vector(x), na.rm = na.rm))
}

What if you want to create an object where
sd is created in a different way?

Wednesday, June 1, 2011

Motivation
• Understanding more code

• Extensibility

• Programming “in the large”

• Focus on S3, then differences to S4.
Overview of R5. Summary of
contributed OO approaches.

Wednesday, June 1, 2011

S3

Wednesday, June 1, 2011

Key points
Generic function style of OO.

No formal class definition: no definition of
what fields or class hierarchy. Class attribute
determines class of object.

Naming convention + UseMethod() used to
find appropriate methods.

Super simple, but ad hoc, and many
inconsistencies. Most common OO in R.

Wednesday, June 1, 2011

Challenge

Develop a class for numeric vectors that
remembers its range (like factors do)

Will extend a numeric vector to add to
attributes: min and max

Wednesday, June 1, 2011

Structure function takes vector and adds attributes
class attribute determines S3 class
structure(1:10, min = 0, max = 10,
 class = "minmax")

Customary to create convenience function to create
objects of specific class
minmax <- function(x, minx = min(x), maxx = max(x)) {
 stopifnot(is.numeric(x))

 structure(x, min = minx, max = maxx,
 class = "minmax")
}
minmax(1:10)

Wednesday, June 1, 2011

Also customary to create function to test if
an object is of that class:
is.minmax <- function(x) {
 inherits(x, "minmax")
}
is.minmax(minmax(1:10))

Wednesday, June 1, 2011

First method is usually a print method. Always
look at the generic first so that you can match
the arguments correctly.

print
Can tell it's a generic method because it uses
UseMethod

Methods follow simple naming scheme
print.minmax <- function(x, ...) {
 print.default(as.numeric(x))
 cat("Range: [", attr(x, "min"), ", ",
 attr(x, "max"), "]\n", sep = "")
}
minmax(1:10)
Only time it's ok to call a method directly

Wednesday, June 1, 2011

Methods are associated with functions,
not classes.

Methods are associated with functions,
not classes.

Methods are associated with functions,
not classes.

Generic functions

Wednesday, June 1, 2011

No checks for object correctness, so easy to abuse

mod <- glm(log(mpg) ~ log(disp), data = mtcars)
class(mod)
class(mod) <- "lm"
mod

class(mod) <- "table"
mod

But surprisingly, this doesn't cause that
many problems - instead of the language enforcing
certain properties you need to do it yourself

Wednesday, June 1, 2011

What’s wrong with the following code?

minmax(1:10, max = 5)

Modify minmax to prevent it from
occurring.

Your turn

Wednesday, June 1, 2011

minmax <- function(x, minx = min(x), maxx = max(x)) {
 stopifnot(is.numeric(x))
 stopifnot(all(minx <= x))
 stopifnot(all(maxx >= x))

 structure(x, min = minx, max = maxx,
 class = "minmax")
}
minmax(1:10, max = 5)

Wednesday, June 1, 2011

a <- minmax(1:10, max = 20)

max(a)
min(a)
range(a)

Need to add methods for these generic functions

max
min
range

How do you know if a function is generic?
* includes UseMethod (like print)
* is primitive or internal and listed in:
* ?S3groupGeneric
* ?InternalMethods

Wednesday, June 1, 2011

max.minmax <- function(..., na.rm = FALSE) {
 parts <- list(...)
 if (length(parts) == 1) {
 attr(parts[[1]], "max")
 } else {
 stop("Maximum of more than one minmax not",
 "implemented")
 }
}

Wednesday, June 1, 2011

Add method for min. Does range work as
expected? If not, fix it.

Extend the function to work with any
number of inputs.

Your turn

Wednesday, June 1, 2011

max.minmax <- function(..., na.rm = FALSE) {
 parts <- list(...)
 if (length(parts) == 1) {
 attr(parts[[1]], "max")
 } else {
 max(vapply(parts, "min", numeric(1)))
 }
}
min.minmax <- function(..., na.rm = FALSE) {
 parts <- list(...)
 if (length(parts) == 1) {
 attr(parts[[1]], "min")
 } else {
 min(vapply(parts, "min", numeric(1)))
 }
}
range.minmax <- function(..., na.rm = FALSE) {
 c(min(..., na.rm = TRUE), max(..., na.rm = TRUE))
}

Wednesday, June 1, 2011

a <- minmax(1:10, max = 20)
a[1:5]

Always need to locate the generic so you can
figure out what the arguments are. This is
sometimes hard!

match.fun("[")
?"["

In this case we can punt, and allow the parent
method to do the hard work
"[.minmax" <- function(x, ...) {
 minmax(NextMethod(), minx = attr(x, "min"),
 maxx = attr(x, "max"))
}

Wednesday, June 1, 2011

Storing S3 objects in a data frame requires a
method for as.data.frame.

df <- data.frame(a = a)

as.data.frame.minmax <- function(x, ...) {
 structure(list(x),
 row.names = seq_along(x),
 class = "data.frame")
}
df <- data.frame(a = a)
df[1:5, "a"]

Wednesday, June 1, 2011

a <- minmax(1:10)
b <- minmax(1:5, max = 20)
a + b
a + 3
3 + a

match.fun("+")
"+.minmax" <- function(e1, e2) {
 minmax(NextMethod(), min = min(e1) + min(e2),
 max = max(e1) + max(e2))
}
a + b
a + 3
3 + a

Wednesday, June 1, 2011

NextMethod() strips the first element off
the class vector and then re-calls the
generic with the same arguments.

Confusing here because it looks like there
is only one element in the class vector.
But: class(unclass(minmax(1:10)))

Inheritance

Wednesday, June 1, 2011

Creating your own generics
mean2 <- function (x, ...) {
 UseMethod("mean2", x)
}

Methods follow a simple naming convention
mean2.numeric <- function(x, ...) sum(x) / length(x)
mean2.data.frame <- function(x, ...)
 sapply(x, mean, ...)
mean2.matrix <- function(x, ...) apply(x, 2, mean)

Bad practice to call methods directly

Wednesday, June 1, 2011

Finds all methods for the mean2 generic:
mean2.*
methods("mean2")

Find all methods associated with matrix class
*.matrix
methods(class = "matrix")

Wednesday, June 1, 2011

Namespacing
In Java/C#/Ruby/Python etc., often have
many small methods, even if only used by
one class.

This is not useful in R – only useful to
define methods that are used by multiple
classes.

Use namespaces (tomorrow) for the
equivalent encapsulation.

Wednesday, June 1, 2011

S4

Wednesday, June 1, 2011

Key points

Same basic style as S3, but formal and
rigorous (and verbose).

setClass() defines classes.
setGeneric() defines generic functions.
setMethod() defines methods.

Wednesday, June 1, 2011

Your turn

Read through 3-S4.r. Compare and
contrast S3 to S4.

Wednesday, June 1, 2011

S3 S4

UseMethod
setGeneric /

standardGeneric

NextMethod callNextMethod

methods findMethods

Wednesday, June 1, 2011

Tips

S4 supports multiple inheritance and
multiple dispatch - but don’t use both.
Method dispatch becomes extremely
complex.

See example in ?"?" for getting help on
S3 methods

Keep it simple!

Wednesday, June 1, 2011

Learning more

?setClass ?setMethod

http://www.ci.tuwien.ac.at/Conferences/
useR-2004/Keynotes/Leisch.pdf

http://www.bioconductor.org/help/course-
materials/2011/AdvancedRFeb2011Seattle/

Chapter 9 in “Software for Data Analysis”,
by John Chambers

Wednesday, June 1, 2011

http://www.ci.tuwien.ac.at/Conferences/useR-2004/Keynotes/Leisch.pdf
http://www.ci.tuwien.ac.at/Conferences/useR-2004/Keynotes/Leisch.pdf
http://www.ci.tuwien.ac.at/Conferences/useR-2004/Keynotes/Leisch.pdf
http://www.ci.tuwien.ac.at/Conferences/useR-2004/Keynotes/Leisch.pdf
http://www.bioconductor.org/help/course-materials/2011/AdvancedRFeb2011Seattle/
http://www.bioconductor.org/help/course-materials/2011/AdvancedRFeb2011Seattle/
http://www.bioconductor.org/help/course-materials/2011/AdvancedRFeb2011Seattle/
http://www.bioconductor.org/help/course-materials/2011/AdvancedRFeb2011Seattle/

R5

Wednesday, June 1, 2011

Key points

Class-based (message passing) OO.
Much closer to Java/C#/Python/Ruby etc.

Have mutable state.

Still under active development.

Currently all methods/fields are public.

Wednesday, June 1, 2011

Range <- setRefClass("Range", fields = "range",
 methods = list(

 initialize = function() {
 initFields(range = NULL)
 },

 reset = function() range <<- NULL
)
)

ContinuousRange <- setRefClass(
 "Continuous", contains = "Range",
 methods = list(
 train = function(x) range <<- train_continuous(x, range)

)
)

DiscreteRange <- setRefClass(
 "DiscreteRange", contains = "Range",
 methods = list(
 train = function(x, drop) range <<- train_discrete(x, range, drop)

)
)

Wednesday, June 1, 2011

library(scales)

r1 <- ContinuousRange$new()
r1$train(1:10)
r1$range
r1$train(100)
r1$range
r1$reset()
r1$range

Wednesday, June 1, 2011

• Works much like a list of functions. Use
$ to access fields and methods

• In methods, use <<- to modify fields.

Key points

Wednesday, June 1, 2011

Use R5 classes only for components that
really need mutable state. Use S3/S4 for
everything else.

Tips

Wednesday, June 1, 2011

Others

Wednesday, June 1, 2011

Packages

• proto

• mutatr

• R.oo

• OOP

• ofp, s3x

Wednesday, June 1, 2011

Wednesday, June 1, 2011

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United
States License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

Wednesday, June 1, 2011

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

