
June 2011

Hadley Wickham
Assistant Professor / Dobelman Family Junior Chair

Department of Statistics / Rice University

Object oriented 
programming

Wednesday, June 1, 2011

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/


1. Motivation

2. S3

3. S4

4. R5 (reference classes)

5. Other OO styles

Wednesday, June 1, 2011



Motivation

Wednesday, June 1, 2011



mean(1:10)
mean(mtcars)

# What does mean do?
mean
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sd <- function (x, na.rm = FALSE) {
    if (is.matrix(x)) 
        apply(x, 2, sd, na.rm = na.rm)
    else if (is.vector(x)) 
        sqrt(var(x, na.rm = na.rm))
    else if (is.data.frame(x)) 
        sapply(x, sd, na.rm = na.rm)
    else sqrt(var(as.vector(x), na.rm = na.rm))
}

# What if you want to create an object where
# sd is created in a different way?
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Motivation
• Understanding more code

• Extensibility

• Programming “in the large”

• Focus on S3, then differences to S4.  
Overview of R5. Summary of 
contributed OO approaches.
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S3
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Key points
Generic function style of OO. 

No formal class definition: no definition of 
what fields or class hierarchy. Class attribute 
determines class of object.

Naming convention + UseMethod() used to 
find appropriate methods.

Super simple, but ad hoc, and many 
inconsistencies. Most common OO in R.
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Challenge

Develop a class for numeric vectors that 
remembers its range (like factors do)

Will extend a numeric vector to add to 
attributes: min and max
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# Structure function takes vector and adds attributes
# class attribute determines S3 class
structure(1:10, min = 0, max = 10, 
  class = "minmax")

# Customary to create convenience function to create
# objects of specific class
minmax <- function(x, minx = min(x), maxx = max(x)) {
  stopifnot(is.numeric(x))
  
  structure(x, min = minx, max = maxx, 
    class = "minmax")
}
minmax(1:10)
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# Also customary to create function to test if
# an object is of that class:
is.minmax <- function(x) {
  inherits(x, "minmax")
}
is.minmax(minmax(1:10))
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# First method is usually a print method. Always 
# look at the generic first so that you can match 
# the arguments correctly.

print
# Can tell it's a generic method because it uses
# UseMethod

# Methods follow simple naming scheme
print.minmax <- function(x, ...) {
  print.default(as.numeric(x))
  cat("Range: [", attr(x, "min"), ", ", 
    attr(x, "max"), "]\n", sep = "")  
}
minmax(1:10)
# Only time it's ok to call a method directly
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Methods are associated with functions, 
not classes.

Methods are associated with functions, 
not classes.

Methods are associated with functions, 
not classes.

Generic functions
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# No checks for object correctness, so easy to abuse

mod <- glm(log(mpg) ~ log(disp), data = mtcars)
class(mod)
class(mod) <- "lm"
mod

class(mod) <- "table"
mod

# But surprisingly, this doesn't cause that
# many problems - instead of the language enforcing
# certain properties you need to do it yourself
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What’s wrong with the following code?  

minmax(1:10, max = 5)

Modify minmax to prevent it from 
occurring.

Your turn
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minmax <- function(x, minx = min(x), maxx = max(x)) {
  stopifnot(is.numeric(x))
  stopifnot(all(minx <= x))
  stopifnot(all(maxx >= x))
  
  structure(x, min = minx, max = maxx, 
    class = "minmax")
}
minmax(1:10, max = 5)
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a <- minmax(1:10, max = 20) 

max(a)
min(a)
range(a)

# Need to add methods for these generic functions

max
min
range

# How do you know if a function is generic?
#  * includes UseMethod (like print)
#  * is primitive or internal and listed in:
#    * ?S3groupGeneric
#    * ?InternalMethods
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max.minmax <- function(..., na.rm = FALSE) {
  parts <- list(...)
  if (length(parts) == 1) {
    attr(parts[[1]], "max")
  } else {
    stop("Maximum of more than one minmax not", 
      "implemented")    
  }
}
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Add method for min.  Does range work as 
expected? If not, fix it.

Extend the function to work with any 
number of inputs.

Your turn
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max.minmax <- function(..., na.rm = FALSE) {
  parts <- list(...)
  if (length(parts) == 1) {
    attr(parts[[1]], "max")
  } else {
    max(vapply(parts, "min", numeric(1)))
  }
}
min.minmax <- function(..., na.rm = FALSE) {
  parts <- list(...)
  if (length(parts) == 1) {
    attr(parts[[1]], "min")
  } else {
    min(vapply(parts, "min", numeric(1)))
  }
}
range.minmax <- function(..., na.rm = FALSE) {
  c(min(..., na.rm = TRUE), max(..., na.rm = TRUE))
}
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a <- minmax(1:10, max = 20) 
a[1:5]

# Always need to locate the generic so you can 
# figure out what the arguments are.  This is 
# sometimes hard!

match.fun("[")
?"["

# In this case we can punt, and allow the parent 
# method to do the hard work
"[.minmax" <- function(x, ...) {
  minmax(NextMethod(), minx = attr(x, "min"), 
    maxx = attr(x, "max"))
}
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# Storing S3 objects in a data frame requires a 
# method for as.data.frame.

df <- data.frame(a = a)

as.data.frame.minmax <- function(x, ...) {
  structure(list(x), 
    row.names = seq_along(x), 
    class = "data.frame")
}
df <- data.frame(a = a)
df[1:5, "a"]
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a <- minmax(1:10)
b <- minmax(1:5, max = 20)
a + b
a + 3
3 + a

match.fun("+")
"+.minmax" <- function(e1, e2) {
  minmax(NextMethod(), min = min(e1) + min(e2), 
    max = max(e1) + max(e2))
}
a + b
a + 3
3 + a
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NextMethod() strips the first element off 
the class vector and then re-calls the 
generic with the same arguments.

Confusing here because it looks like there 
is only one element in the class vector. 
But: class(unclass(minmax(1:10)))

Inheritance
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# Creating your own generics
mean2 <- function (x, ...) {
  UseMethod("mean2", x)
}

# Methods follow a simple naming convention
mean2.numeric <- function(x, ...) sum(x) / length(x)
mean2.data.frame <- function(x, ...) 
  sapply(x, mean, ...)
mean2.matrix <- function(x, ...) apply(x, 2, mean)

# Bad practice to call methods directly
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# Finds all methods for the mean2 generic:
# mean2.*
methods("mean2")

# Find all methods associated with matrix class
# *.matrix
methods(class = "matrix")
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Namespacing
In Java/C#/Ruby/Python etc., often have 
many small methods, even if only used by 
one class.

This is not useful in R – only useful to 
define methods that are used by multiple 
classes.

Use namespaces (tomorrow) for the 
equivalent encapsulation.
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S4
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Key points

Same basic style as S3, but formal and 
rigorous (and verbose).  

setClass() defines classes.
setGeneric() defines generic functions.
setMethod() defines methods.
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Your turn

Read through 3-S4.r.  Compare and 
contrast S3 to S4.
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S3 S4

UseMethod
setGeneric /  

standardGeneric

NextMethod callNextMethod

methods findMethods
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Tips

S4 supports multiple inheritance and 
multiple dispatch - but don’t use both. 
Method dispatch becomes extremely 
complex.

See example in ?"?" for getting help on 
S3 methods

Keep it simple!
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Learning more

?setClass ?setMethod

http://www.ci.tuwien.ac.at/Conferences/
useR-2004/Keynotes/Leisch.pdf

http://www.bioconductor.org/help/course-
materials/2011/AdvancedRFeb2011Seattle/ 

Chapter 9 in “Software for Data Analysis”, 
by John Chambers
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R5
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Key points

Class-based (message passing) OO. 
Much closer to Java/C#/Python/Ruby etc. 

Have mutable state.

Still under active development.

Currently all methods/fields are public.
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Range <- setRefClass("Range", fields = "range", 
  methods = list(

    initialize = function() {
      initFields(range = NULL)
    },

    reset = function() range <<- NULL
  )
)

ContinuousRange <- setRefClass(
  "Continuous", contains = "Range", 
  methods = list(
    train = function(x) range <<- train_continuous(x, range)

  )
)

DiscreteRange <- setRefClass(
  "DiscreteRange", contains = "Range", 
  methods = list(
    train = function(x, drop) range <<- train_discrete(x, range, drop)

  )
)
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library(scales)

r1 <- ContinuousRange$new()
r1$train(1:10)
r1$range
r1$train(100)
r1$range
r1$reset()
r1$range
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• Works much like a list of functions. Use 
$ to access fields and methods

• In methods, use <<- to modify fields. 

Key points
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Use R5 classes only for components that 
really need mutable state.  Use S3/S4 for 
everything else.

Tips
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Others
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Packages

• proto

• mutatr

• R.oo

• OOP

• ofp, s3x
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This work is licensed under the Creative 
Commons Attribution-Noncommercial 3.0 United 
States License. To view a copy of this license, 
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons, 
171 Second Street, Suite 300, San Francisco, 
California, 94105, USA.
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