First class functions

Hadley Wickham

Assistant Professor / Dobelman Family Junior Chair
Department of Statistics / Rice University

1. Motivation
2. First class functions
3. Closures
4. Higher-order functions
5. Lists of functions

DRY principle: Don't Repeat Yourself

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system

Popularised by the "Pragmatic Programmers"

```
# Fix missing values
df$a[df$a == -99] <- NA
df$b[df$b == -99] <- NA
df$c[df$c == -99] <- NA
df$d[df$d == -99] <- NA
df$e[df$e == -99] <- NA
df$f[df$f == -99] <- NA
df$g[df$g == -98] <- NA
df$h[df$h == -99] <- NA
df$i[df$i == -99] <- NA
df$i[df$j == -99] <- NA
df$k[df$k == -99] <- NA
```

```
# Fix missing values
df$a[df$a == -99] <- NA
df$b[df$b == -99] <- NA
df$c[df$c == -99] <- NA
df$d[df$d == -99] <- NA
df$e[df$e == -99] <- NA
df$f[df$f == -99] <- NA
df$g[df$g == -98] <- NA
df$h[df$h == -99] <- NA
df$i[df$i == -99] <- NA
df$i[df$j == -99] <- NA
df$k[df$k == -99] <- NA
```

fix_missing <- function(x) \{
$x[x==-99]<-N A$
X
\}
df\$a <- fix_missing(df\$a) df\$b <- fix_missing(df\$b) df\$c <- fix_missing(df\$c) df\$d <- fix_missing(df\$d) df\$e <- fix_missing(df\$e) df\$f <- fix_missing(df\$f) df\$g <- fix_missing(df\$g) df\$h <- fix_missing(df\$h) df\$h <- fix_missing(df\$i) df\$j <- fix_missing(df\$j) df\$k <- fix_missing(df\$k)
\}
df\$a <- fix_missing (df\$a)
df\$b <- fix_missing(df\$b)
df\$c <- fix_missing(df\$c)
df\$d <- fix_missing(df\$d)
df\$e <- fix_missing(df\$e)
df\$f <- fix_missing(df\$f)
df\$g <- fix_missing(df\$g)
df\$h <- fix_missing(df\$h)
df\$h <- fix_missing(df\$i)
df\$j <- fix_missing(df\$j)

DRY principle prevents inconsistency
fix_missing <- function(x) \{
$x[x==-99]<-N A$
x
\}
df\$a <- fix_missing(df\$a) df\$b <- fix_missing(df\$b) df\$c <- fix_missing(df\$c) df\$d <- fix_missing(df\$d) df\$e <- fix_missing(df\$e) df\$f <- fix_missing(df\$f) df\$g <- fix_missing(df\$g) df\$h <- fix_missing(df\$h) $d f \$ h<-$ fix_missing (df\$i) df\$j <- fix_missing(df\$j) df\$k <- fix_missing(df\$k)
fix_missing <- function(x) \{ $x[x==-99]<-N A$ X

DRY principle prevents inconsistency

More powerful abstractions lead to less repetition

$$
\begin{aligned}
& \text { fix_missing <- function(x) \{ } \\
& \quad x[x==-99]<-N A \\
& x \\
& \} \\
& \text { df[] <- lapply(df, fix_missing) }
\end{aligned}
$$

And easier generalisation

> fix_missing <- function(x) \{ $x[x$ == -99] <- NA x
> \}

numeric <- vapply(df, is.numeric, logical(1)) df[numeric] <- lapply(df[numeric], fix_missing)

And easier generalisation

fix_missing <- function(x) \{
$x[x$ == -99] <- NA
x
\}
numeric <- vapply(df, is.numeric, logical(1))
df[numeric] <- lapply(df[numeric], fix_missing)
mean(df\$a)
median(df\$a)
sd(df\$a)
mad (df\$a)
IQR(df\$a)

What are the two sources of repetition in this code? Discuss with your neighbour for 1 minute.

mean(df\$b)
median(df\$b)
sd(df\$b)
mad(df\$b)
IQR(df\$b)
mean(df\$c)
median(df\$c)
sd(df\$c)
$\operatorname{mad}(\mathrm{df} \$ \mathrm{c})$
IQR(df\$c)

summary <- function(x) \{ $c(m e a n(x), \operatorname{median}(x), s d(x), \operatorname{mad}(x), \operatorname{IQR}(x))$ \}

summary (df\$a)
summary (df\$b)
summary (df\$c)

summary <- function(x) \{ c(mean(x, na.rm = TRUE), median(x, na.rm = TRUE), sd(x, na.rm = TRUE), mad(x, na.rm = TRUE), IQR(x, na.rm = TRUE))
 \}

summary (df\$a)
summary (df\$b)
summary (df\$c)

summary <- function(x) \{
c(mean(x, na.rm = TRUE),
median(x, na.rm = TRUE),
sd(x, na.rm = TRUE),
mad(x, na.rm = TRUE),
IQR(x, na.rm = TRUE))
\}

summary (df\$a)
summary (df\$b)
summary(df\$c)

In this session we'll learn new tools for dealing with repetition of functions

1. Functions don't need names (anonymous functions)
2. Functions can be written by other functions (closures)
3. Functions can take functions as arguments (higher-order functions)
4. Functions can be stored in other data structures
\# Creating an anonymous function function(x) 3
\# Calling an anonymous function (function(x) 3)()
\# Not:
function(x) 3()
\# Anonymous functions work just like ordinary
\# functions
formals(function $(x=4) g(x)+h(x))$
body(function $(x=4) g(x)+h(x))$
environment (function $(x=4) g(x)+h(x))$
\# Useful for small, one-off tasks that don't \# merit creating a named function
lapply(mtcars, function(x) length(unique(x)))
integrate(function(x) $\left.\sin (x)^{\wedge} 2,0, p i\right)$

Your turn

Given a name, how do you find that function? Given a function, how do you find its name?

Brainstorm with your neighbour for 1 minute.

Clostures

```
x <- 5
f<- function() {
    y <- 10
    c(x = x, y = y)
}
f()
g <- function() {
        x <- 20
        y<- 10
        c(x = x, y = y)
}
g()
```

\# What do these functions return?
\# How does variable lookup in R work?

\# What does $f()$ return?
\# What does $f()()$ mean? What does it do?
\# How does it work?

Scoping

R uses lexical scoping: variable lookup is based on where functions were created.

If a variable isn't found in the current environment, R looks in the parent: the environment where the function was created.

Anonymous functions remember their parent environment, even if it has since "disappeared".
\# Closures are useful when you want a function \# that can create a whole class of functions:
power <- function(exponent) \{
function(x) x ^ exponent
\}
square <- power (2)
square(2)
square(4)
cube <- power(3)
cube (2)
cube (4)
square
\# We can find the environment and its parent environment(square) parent.env(environment(square))
\# Or inspect objects defined in that environment ls(environment(square)) get("exponent", environment(square))
environment(square)\$exponent
as.list(environment(square))

Your turn

Run the code on the following page. What does it do? How does it work? Why do the different counters not interfere with each other?

```
new_counter <- function() {
    i <- 0
    function() {
        # do something useful, then ...
        i <<- i + 1
        i
    }
}
```

counter_one <- new_counter()
counter_two <- new_counter()
counter_one()
counter_one()
counter_two()

Mutable state

Closures are one way of creating mutable state - the usual copy on modify semantics do not seem to apply here.

We'll learn another another technique after lunch.
\# Built in functions that make closures

Negate(is.numeric)("abc")
Negate
vrep <- Vectorize(rep.int, "times")
vrep(42, times = 1:4)
vrep
as.list(environment(vrep))
e <- ecdf(runif(1000))
str (e)
e(0.5)
class(e) \# Functions can have classes too!

lipher order functons

HOEs

Closures are most useful in conjunction with functions that take functions as arguments.

You're probably already familiar with a few: lapply, sapply, apply, optimise, ...

Two main camps: data structure manipulation and mathematical
\# Data structure HOFs
\# Provide basic tools for when you have a predicate \# function instead of a logical vector.
\# Filter: keeps true
\# Find: value of first true
\# Position: location of first true

Filter(is.factor, iris)
Find(is.factor, iris)
Position(is.factor, iris)
\# One function I use a lot:
compact <- function(x) Filter(Negate(is.null), x)
samples <- replicate(5, sample(10, 20, rep $=\mathrm{T})$, simplify = FALSE)
\# Want to find intersection of all values int <- intersect(samples[[1]], samples[[2]])
int <- intersect(int, samples[[3]])
int <- intersect(int, samples[[4]])
int <- intersect(int, samples[[5]])
\# Reduce recursively applies a function in this way Reduce(intersect, samples)
\# Mathematical HOFs
integrate(sin, 0, pi)
uniroot (sin, pi * c(1 / 2, $3 / 2)$)
optimise(sin, c(0, 2 * pi))
optimise(sin, c(0, pi), maximum = TRUE)
\# Combination of closures and HOF particularly useful. \# For statistics, maximum likelihood estimation is a \# great example.

```
poisson_nll <- function(x) {
    n <- length(x)
    function(lambda) {
        n * lambda - sum(x) * log(lambda) # + ...
    }
}
```

nll1 <- poisson_nll(c(41, 30, 31, 38, 29, 24, 30, 29))
nll2 <- poisson_nll(c(6, 4, 7, 3, 3, 7, 5, 2, 2, 7))
optimise(nll1, c(0, 100))
optimise(nll2, c(0, 100))


```
compute_mean <- list(
    base = function(x) mean(x),
    sum = function(x) sum(x) / length(x),
    manual = function(x) {
        total <- 0
        n <- length(x)
        for (i in seq_along(x)) {
        total <- total + x[i] / n
        }
    total
    }
)
```

call_fun <- function(f, ...) f(...)
x <- runif(1e6)
lapply(compute_mean, call_fun, x)
lapply(compute_mean, function(f) system.time(f(x)))

summary <- function(x) \{ c(mean(x, na.rm = TRUE), median(x, na.rm = TRUE), sd(x, na.rm = TRUE), mad(x, na.rm = TRUE), IQR(x, na.rm = TRUE))
 \}

summary (df\$a)
summary (df\$b)
summary (df\$c)

Your turn

Modify the summary function to take a user specified list of functions.

This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/ 3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

