
June 2011

Hadley Wickham
Assistant Professor / Dobelman Family Junior Chair

Department of Statistics / Rice University

First class functions

Wednesday, June 1, 2011

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

1. Motivation

2. First class functions

3. Closures

4. Higher-order functions

5. Lists of functions

Wednesday, June 1, 2011

Motivation

Wednesday, June 1, 2011

DRY principle:
Don’t Repeat Yourself

Every piece of knowledge must have a
single, unambiguous, authoritative

representation within a system

Popularised by the “Pragmatic Programmers”
Wednesday, June 1, 2011

Fix missing values
df$a[df$a == -99] <- NA
df$b[df$b == -99] <- NA
df$c[df$c == -99] <- NA
df$d[df$d == -99] <- NA
df$e[df$e == -99] <- NA
df$f[df$f == -99] <- NA
df$g[df$g == -98] <- NA
df$h[df$h == -99] <- NA
df$i[df$i == -99] <- NA
df$i[df$j == -99] <- NA
df$k[df$k == -99] <- NA

Wednesday, June 1, 2011

Fix missing values
df$a[df$a == -99] <- NA
df$b[df$b == -99] <- NA
df$c[df$c == -99] <- NA
df$d[df$d == -99] <- NA
df$e[df$e == -99] <- NA
df$f[df$f == -99] <- NA
df$g[df$g == -98] <- NA
df$h[df$h == -99] <- NA
df$i[df$i == -99] <- NA
df$i[df$j == -99] <- NA
df$k[df$k == -99] <- NA

Wednesday, June 1, 2011

fix_missing <- function(x) {
 x[x == -99] <- NA
 x
}
df$a <- fix_missing(df$a)
df$b <- fix_missing(df$b)
df$c <- fix_missing(df$c)
df$d <- fix_missing(df$d)
df$e <- fix_missing(df$e)
df$f <- fix_missing(df$f)
df$g <- fix_missing(df$g)
df$h <- fix_missing(df$h)
df$h <- fix_missing(df$i)
df$j <- fix_missing(df$j)
df$k <- fix_missing(df$k)

DRY principle
prevents

inconsistency

Wednesday, June 1, 2011

fix_missing <- function(x) {
 x[x == -99] <- NA
 x
}
df$a <- fix_missing(df$a)
df$b <- fix_missing(df$b)
df$c <- fix_missing(df$c)
df$d <- fix_missing(df$d)
df$e <- fix_missing(df$e)
df$f <- fix_missing(df$f)
df$g <- fix_missing(df$g)
df$h <- fix_missing(df$h)
df$h <- fix_missing(df$i)
df$j <- fix_missing(df$j)
df$k <- fix_missing(df$k)

DRY principle
prevents

inconsistency

Wednesday, June 1, 2011

fix_missing <- function(x) {
 x[x == -99] <- NA
 x
}

df[] <- lapply(df, fix_missing)

More powerful
abstractions lead
to less repetition

Wednesday, June 1, 2011

fix_missing <- function(x) {
 x[x == -99] <- NA
 x
}

numeric <- vapply(df, is.numeric, logical(1))
df[numeric] <- lapply(df[numeric], fix_missing)

And easier
generalisation

Wednesday, June 1, 2011

fix_missing <- function(x) {
 x[x == -99] <- NA
 x
}

numeric <- vapply(df, is.numeric, logical(1))
df[numeric] <- lapply(df[numeric], fix_missing)

And easier
generalisation

Wednesday, June 1, 2011

mean(df$a)
median(df$a)
sd(df$a)
mad(df$a)
IQR(df$a)

mean(df$b)
median(df$b)
sd(df$b)
mad(df$b)
IQR(df$b)

mean(df$c)
median(df$c)
sd(df$c)
mad(df$c)
IQR(df$c)

What are the two sources
of repetition in this code?
Discuss with your
neighbour for 1 minute.

Wednesday, June 1, 2011

summary <- function(x) {
 c(mean(x), median(x), sd(x), mad(x), IQR(x))
}

summary(df$a)
summary(df$b)
summary(df$c)

Wednesday, June 1, 2011

summary <- function(x) {
 c(mean(x, na.rm = TRUE),
 median(x, na.rm = TRUE),
 sd(x, na.rm = TRUE),
 mad(x, na.rm = TRUE),
 IQR(x, na.rm = TRUE))
}

summary(df$a)
summary(df$b)
summary(df$c)

Wednesday, June 1, 2011

summary <- function(x) {
 c(mean(x, na.rm = TRUE),
 median(x, na.rm = TRUE),
 sd(x, na.rm = TRUE),
 mad(x, na.rm = TRUE),
 IQR(x, na.rm = TRUE))
}

summary(df$a)
summary(df$b)
summary(df$c)

In this session
we’ll learn new

tools for dealing
with repetition of

functions

Wednesday, June 1, 2011

First class
functions

Wednesday, June 1, 2011

1. Functions don’t need names
(anonymous functions)

2. Functions can be written by other
functions (closures)

3. Functions can take functions as
arguments (higher-order functions)

4. Functions can be stored in other data
structures

Wednesday, June 1, 2011

Creating an anonymous function
function(x) 3

Calling an anonymous function
(function(x) 3)()
Not:
function(x) 3()

Anonymous functions work just like ordinary
functions
formals(function(x = 4) g(x) + h(x))
body(function(x = 4) g(x) + h(x))
environment(function(x = 4) g(x) + h(x))

Wednesday, June 1, 2011

Useful for small, one-off tasks that don't
merit creating a named function

lapply(mtcars, function(x) length(unique(x)))

integrate(function(x) sin(x)^2, 0, pi)

Wednesday, June 1, 2011

Given a name, how do you find that
function? Given a function, how do you
find its name?

Brainstorm with your neighbour for 1
minute.

Your turn

Wednesday, June 1, 2011

Closures

Wednesday, June 1, 2011

x <- 5
f <- function() {
 y <- 10
 c(x = x, y = y)
}
f()

g <- function() {
 x <- 20
 y <- 10
 c(x = x, y = y)
}
g()

What do these functions return?
How does variable lookup in R work?

Wednesday, June 1, 2011

x <- 0
y <- 10
f <- function() {
 x <- 1
 function() {
 y <- 2
 x + y
 }
}

What does f() return?
What does f()() mean? What does it do?
How does it work?

Wednesday, June 1, 2011

R uses lexical scoping: variable lookup is
based on where functions were created.

If a variable isn’t found in the current
environment, R looks in the parent: the
environment where the function was created.

Anonymous functions remember their parent
environment, even if it has since
“disappeared”.

Scoping

Wednesday, June 1, 2011

Closures are useful when you want a function
that can create a whole class of functions:

power <- function(exponent) {
 function(x) x ^ exponent
}

square <- power(2)
square(2)
square(4)

cube <- power(3)
cube(2)
cube(4)

Wednesday, June 1, 2011

square

We can find the environment and its parent
environment(square)
parent.env(environment(square))

Or inspect objects defined in that environment
ls(environment(square))
get("exponent", environment(square))
environment(square)$exponent
as.list(environment(square))

Wednesday, June 1, 2011

Run the code on the following page.
What does it do? How does it work? Why
do the different counters not interfere with
each other?

Your turn

Wednesday, June 1, 2011

new_counter <- function() {
 i <- 0
 function() {
 # do something useful, then ...
 i <<- i + 1
 i
 }
}

counter_one <- new_counter()
counter_two <- new_counter()

counter_one()
counter_one()
counter_two()

Wednesday, June 1, 2011

Closures are one way of creating mutable
state - the usual copy on modify
semantics do not seem to apply here.

We’ll learn another another technique
after lunch.

Mutable state

Wednesday, June 1, 2011

Built in functions that make closures

Negate(is.numeric)("abc")
Negate

vrep <- Vectorize(rep.int, "times")
vrep(42, times = 1:4)
vrep
as.list(environment(vrep))

e <- ecdf(runif(1000))
str(e)
e(0.5)
class(e) # Functions can have classes too!

Wednesday, June 1, 2011

Higher-
order

functions

Wednesday, June 1, 2011

HOFs

Closures are most useful in conjunction
with functions that take functions as
arguments.

You’re probably already familiar with a
few: lapply, sapply, apply, optimise, ...

Two main camps: data structure
manipulation and mathematical

Better

vocab

Wednesday, June 1, 2011

Data structure HOFs
Provide basic tools for when you have a predicate
function instead of a logical vector.

Filter: keeps true
Find: value of first true
Position: location of first true

Filter(is.factor, iris)
Find(is.factor, iris)
Position(is.factor, iris)

One function I use a lot:
compact <- function(x) Filter(Negate(is.null), x)

Wednesday, June 1, 2011

samples <- replicate(5, sample(10, 20, rep = T),
 simplify = FALSE)

Want to find intersection of all values
int <- intersect(samples[[1]], samples[[2]])
int <- intersect(int, samples[[3]])
int <- intersect(int, samples[[4]])
int <- intersect(int, samples[[5]])

Reduce recursively applies a function in this way
Reduce(intersect, samples)

Wednesday, June 1, 2011

Mathematical HOFs

integrate(sin, 0, pi)
uniroot(sin, pi * c(1 / 2, 3 / 2))
optimise(sin, c(0, 2 * pi))
optimise(sin, c(0, pi), maximum = TRUE)

Wednesday, June 1, 2011

Combination of closures and HOF particularly useful.
For statistics, maximum likelihood estimation is a
great example.

poisson_nll <- function(x) {
 n <- length(x)
 function(lambda) {
 n * lambda - sum(x) * log(lambda) # + ...
 }
}

nll1 <- poisson_nll(c(41, 30, 31, 38, 29, 24, 30, 29))
nll2 <- poisson_nll(c(6, 4, 7, 3, 3, 7, 5, 2, 2, 7))

optimise(nll1, c(0, 100))
optimise(nll2, c(0, 100))

Wednesday, June 1, 2011

Lists of
functions

Wednesday, June 1, 2011

compute_mean <- list(
 base = function(x) mean(x),
 sum = function(x) sum(x) / length(x),
 manual = function(x) {
 total <- 0
 n <- length(x)
 for (i in seq_along(x)) {
 total <- total + x[i] / n
 }
 total
 }
)

call_fun <- function(f, ...) f(...)
x <- runif(1e6)
lapply(compute_mean, call_fun, x)
lapply(compute_mean, function(f) system.time(f(x)))

Wednesday, June 1, 2011

summary <- function(x) {
 c(mean(x, na.rm = TRUE),
 median(x, na.rm = TRUE),
 sd(x, na.rm = TRUE),
 mad(x, na.rm = TRUE),
 IQR(x, na.rm = TRUE))
}

summary(df$a)
summary(df$b)
summary(df$c)

Wednesday, June 1, 2011

Modify the summary function to take a
user specified list of functions.

Your turn

Wednesday, June 1, 2011

Wednesday, June 1, 2011

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United
States License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

Wednesday, June 1, 2011

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

