
October 2011

Hadley Wickham
Assistant Professor / Dobelman Family Junior Chair

Department of Statistics / Rice University

Package basics

Thursday, October 27, 11

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

1. What is a package?

2. Where do packages live?

3. Your first package

4. Development cycle

Thursday, October 27, 11

What is a
package?

Thursday, October 27, 11

1. A name (stringr)

2. A root directory
(stringr/)

3. A directory of R code
(stringr/R/)

!"" R
!"" file1.r
!"" file2.r

Thursday, October 27, 11

• All lowercase
• Be memorable
• Be googleable!
• Change package name if you make

large API breaking changes

Recommendations

Thursday, October 27, 11

4. Add a description file
!"" DESCRIPTION
!"" R

Thursday, October 27, 11

Package: stringr
Type: Package
Title: Make it easier to work with strings.
Version: 0.5
Author: Hadley Wickham <h.wickham@gmail.com>
Maintainer: Hadley Wickham <h.wickham@gmail.com>
Description: stringr is a set of simple wrappers that make R's string
 functions more consistent, simpler and easier to use. It does this
 by ensuring that: function and argument names (and positions) are
 consistent, all functions deal with NA's and zero length character
 appropriately, and the output data structures from each function
 matches the input data structures of other functions.
Imports: plyr
Depends: R (>= 2.11.0)
Suggests: testthat (>= 0.3)
License: GPL-2

https://github.com/hadley/devtools/wiki/Package-basics
Thursday, October 27, 11

mailto:h.wickham@gmail.com
mailto:h.wickham@gmail.com
mailto:h.wickham@gmail.com
mailto:h.wickham@gmail.com
https://github.com/hadley/devtools/wiki/Package-basics
https://github.com/hadley/devtools/wiki/Package-basics

5. Documentation
(stringr/man)

(Best if automatically
generated from code
comments)

!"" DESCRIPTION
!"" man
!"" R

Thursday, October 27, 11

#' The length of a string (in characters).
#'
#' @param string input character vector
#' @return numeric vector giving number of characters in
#' each element of the character vector. Missing strings have
#' missing length.
#' @keywords character
#' @seealso \code{\link{nchar}} which this function wraps
#' @export
#' @examples
#' str_length(letters)
#' str_length(c("i", "like", "programming", NA))
str_length <- function(string) {
 string <- check_string(string)

 nc <- nchar(string, allowNA = TRUE)
 is.na(nc) <- is.na(string)
 nc
}

https://github.com/hadley/devtools/wiki/docs-function
Thursday, October 27, 11

https://github.com/hadley/devtools/wiki/docs-function
https://github.com/hadley/devtools/wiki/docs-function

Your turn

Download the source code for stringr
and plyr from github, and coin from
CRAN.
Unzip and explore. What files and
directories didn’t I mention?

Thursday, October 27, 11

@Where do
packages

live?

Thursday, October 27, 11

A library is a collection of packages. You can
have multiple libraries on your computer.
.libPaths() lists currently available libraries.
Packages are installed into the first library.
Usually have at least two libraries: base
packages and packages that you installed.
Default is R-version specific: set R_LIBS to
preserve packages across upgrades.

Libraries

Thursday, October 27, 11

• Windows: right-click shortcut, choose
properties, and under path add
R_LIBS=c:/R/

• Mac/Linux: Create file .Renviron in your
home directory and add R_LIBS=~/R

• After upgrading R, run
update.packages(checkBuilt = T, ask = F)

Setting R_LIBS

Thursday, October 27, 11

Your turn

What libraries are you currently using?
Why? Set up R_LIBS as described
previously if you’d like to keep your
packages when you upgrade R.

Thursday, October 27, 11

Dev mode
When simultaneously developing and
using your own packages, it makes sense
to have an extra library for development
versions
Separates your buggy/experimental
package code from your stable/
production code.

Thursday, October 27, 11

Switch to alternative library for in-development
packages - makes it easier to keep your existing
code working

dev_mode()

Switch back to normal
dev_mode()

Thursday, October 27, 11

How to get R code onto your computer:

Download and install from CRAN:
install.packages()

Download and install from github:
install_github()

Install from local directory
install()

Thursday, October 27, 11

Gets the latest released version
install.packages("roxygen2")

Gets the latest development version
install_github("roxygen", "klutometis")

Installs my local development version
install("roxygen")

Thursday, October 27, 11

How to load code into R:

Uses currently installed package
library("ggplot2")

Uses current source code
load_all("ggplot2")

Installs package and then reloads
install("ggplot2", reload = T)

Thursday, October 27, 11

Your first
package

Thursday, October 27, 11

Your turn
In the hof-1 directory, you'll find a few
functions that I'm considering turning into
a package.
Start the process by putting them in the
appropriate directory structure and
creating a DESCRIPTION file.

Load the code with load_all("hof-1").

Thursday, October 27, 11

Development
cycle

Thursday, October 27, 11

Modify and
save code

Reload in R

Does it work?

Identify the
task

Write an
automated testYES

NO

Exploratory programming

Document
Thursday, October 27, 11

Confirmatory programming

Modify and
save code

Reload in R

Does it work?

Write an
automated test

YES

NO

Document it

aka test driven development (TDD)
Thursday, October 27, 11

library(devtools)

* Reload code and data
load_all("hof-ok")

* Run automated tests
test("hof-ok")

* Update documentation
document("hof-ok")

My text editor automatically saves all open
files when I leave it, so I don't even need to
explicitly save

Thursday, October 27, 11

Load, test and document the plyr and
stringr packages you just downloaded.

Your turn

Thursday, October 27, 11

At some point you will want to release
your package to the public on CRAN.
To do so you also need to pass a
stringent set of checks: R CMD check.

Devtools makes this a bit easier with the
check(), check_doc(), run_examples(),
and release() functions.

https://github.com/hadley/devtools/wiki/Release

CRAN

Thursday, October 27, 11

https://github.com/hadley/devtools/wiki/Release
https://github.com/hadley/devtools/wiki/Release

This will be

frustrating!
Thursday, October 27, 11

Up next

• Package basics: devtools

• Documentation: roxygen2

• Testing: testthat

• Releasing your package: devtools

Thursday, October 27, 11

Thursday, October 27, 11

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United
States License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

Thursday, October 27, 11

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

