# Visualising space Hadley Wickham 

Assistant Professor / Dobelman Family Junior Chair
Department of Statistics / Rice University

## 1. Choropleth (thematic) maps

## 2. Texas mortality

## 3. TB notifications

4. Bubble maps

## Getting started

options(stringsAsFactors = FALSE)
library(ggplot2)
pop <- read.csv("tx-pop.csv") deaths <- read.csv("tx-deaths.csv") borders <- read.csv("tx-borders.csv")

## Choropleth maps

Make fill colour of map areas proportional to some value (e.g. a rate)

We'll demonstrate this with deaths for each county (254) in Texas, broken down by ICD-9 chapter.

First step is to merge borders with area level information.
choro <- merge(borders, pop)
qplot(long, lat, data = choro, geom = "polygon", group = group)
त्,
choro <- choro[order(choro\$order), ] qplot(long, lat, data = choro, geom = "polygon", group = group)

qplot(long, lat, data = choro, geom = "polygon", group = group, fill = pop)

qplot(long, lat, data = choro, geom = "polygon", group = group, fill = log10(pop))


## Binning

Presentation more reliable if we bin into a small number of categories (4-9). Perception not harmed.

Usually best to bin so we have the same number of cases in each bin (quantiles).

## Cut

cut: If you know exactly what intervals you want
cut_number: to cut into n intervals each containing an equal number of cases.
cut_interval: to cut into n intervals of equal length (quantiles).
choro\$bin <- cut(log10(choro\$pop), breaks = 2:7, labels = c("< 1000", "< 1e4", "< 1e5", "< 1e6", "< 1e7"))
qplot(long, lat, data = choro, geom = "polygon", group = group, fill = bin)

last_plot() + scale_fill_brewer("Population", pal = "Blues")


## ColorBrewer

http://colorbrewer2.org/
Helps to pick good colour scales for maps.

## Your turn

Experiment with using cut_interval and cut_number to break up the population in different ways (on both original and log scales). Read the help if you get stuck.

Try out different colour brewer scales.
cancer <- subset(deaths, disease == "Neoplasms") choro <- merge(borders, cancer) choro <- choro[order(choro\$order), ]
qplot(long, lat, data = choro, geom = "polygon", group = group, fill = cut_number (rate, 5)) + scale_fill_brewer(pal = "Blues")
\# Can you find a disease with a strong spatial \# component?

## TB Notifications

Number and rate of TB cases broken down by country and year (for all countries with at least 10 years of data). Use with official WHO shape file.

## Getting started

library(ggplot2)
tb <- read.csv("tb.csv")
tb2008 <- subset(tb, year == 2008)
boundaries <- read.csv("world-boundaries.csv")
choro <- merge(tb2008, worlddf, by = "iso2")
choro <- choro[order(choro\$order), ]
qplot(long, lat, data = choro, fill = cut_number(rate, 5), geom = "polygon", group = group) + scale_fill_brewer("Rate", pal = "Blues")
$80-$
long


## Problems?

What is a big problem with this plot? What is the problem with choropleth plots?

Take one minute to brainstorm some possible issues.

## Problems

Big areas most striking. But in the US (as with most countries) big areas tend to least populated. Most populated areas tend to be small and dense - e.g. the East coast.
(Another computational problem: need to push around a lot of data to create these plots)

## Alternative

Bubble (proportional symbol) maps.
Draw a point in the centre of each country, and map colour or size to rate.

To compute centres, figure out centroid of biggest piece of country. See 3-maps.r for complete details

## Aside

Notice anything missing?
You already know one easy solution to this (draw a background layer)

## Getting started

centres <- read.csv("world-centres.csv") bubble <- merge(centres, tb2008m, by = "iso2")

$$
\begin{aligned}
& \text { world_coord <- coord_map( } \\
& \left.\qquad \begin{array}{c}
x \lim =c(-180,180) \\
\text { ylim }
\end{array}=c(-50,70)\right)
\end{aligned}
$$

qplot(long, lat, data = bubble, size = area, colour = rate) + scale_area(to = c(0.1, 25), legend = FALSE) + world_coord

long
aka a Dorling cartogram
qplot(long, lat, data = bubble, size = rate) + world_coord

qplot(long, lat, data = bubble, size = log10(pop), colour = rate) + world_coord

long

## Your turn

Practice recreating a bubble map. What other point aesthetics might you be able to use?

Think about the disadvantages of a bubble map.

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/ 3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

