Basic plots

Hadley Wickham

Assistant Professor / Dobelman Family Junior Chair
Department of Statistics / Rice University

1. Scatterplots
2. Adding extra variables with facetting and aesthetics
3. Jittering and boxplots
4. Bar charts
5. Histograms

The data

Global school based healthy survey
Three countries: Uganda, The Philippines and the United Arab Emirates

Extracted variables related to diet and hand washing

Getting started

\# If you haven't already... install.packages("ggplot2")
\# Every time you load R
library(ggplot2)
load(file.choose())
\# Or if you have your working directory \# set up (very good idea!)
load("gshs.rdata")

Working directory

Remember to set your working directory.
From the terminal (linux or mac): the working directory is the directory you're in when you start R

On windows: setwd(choose.dir())
On the mac: $\mathscr{H}-\mathrm{D}$

Scatterplot basics

head(gshs)
str (gshs)
summary (gshs)
qplot(weight, height, data = gshs)
\# To start with:
qplot(weight, height, data = sample)

Your turn

Load the data then make scatterplots of age, weight, height and bmi.

Additional variables

Can display additional variables with aesthetics (like shape, colour, size) or facetting (small multiples displaying different subsets)

Your turn

Run the code from previous slides, then experiment with the colour, size, and shape aesthetics. How does the display change when you use discrete vs continuous variables? What happens when you combine multiple aesthetics?

	Discrete	Continuous
Colour	Evenly spaced hues	Gradient from red to blue
Size	Discrete size steps	Linear mapping between radius and value
Shape	Different shape for each	Shouldn't work

Faceting

Small multiples display different subsets of the data.

Useful for exploring conditional relationships. Useful for large data.

Your turn

qplot(height, weight, data = sample) + facet_grid(. ~ sex)
qplot(height, weight, data = sample) + facet_grid(country ~ .)
qplot(height, weight, data = sample) + facet_grid(country ~ sex)
qplot(height, weight, data = sample) + facet_wrap(~ hungry)

Summary

facet_grid(): 2d grid, rows ~ cols,
. for no split
facet_wrap(): 1d ribbon wrapped into 2d
Can control whether scales are common or individual with the scales argument.

How could we improve : this plot?

Brainstorm for 1 minute.

qplot(country, weight, data = sample, geom = "jitter")

qplot(country, weight, data = sample, geom = "jitter")

qplot(country, weight, data = sample, geom = "boxplot")

qplot(reorder(country, weight), weight, data = sample, geom = "boxplot")

qplot(reorder(country, weight), weight, data-\sample, geom = "boxplot")

Very useful technique!

qplot(reorder(country, weight), weight, data = sample, geom $\left.{ }^{\circ}=c(" j i t t e r ", ~ " b o x p l o t ")\right) ~$

qplot(height, weight, data = gshs, colour = country)

qplot(height, weight, data = gshs, colour = country)

Idea	ggplot
Small points	shape $=\mathrm{I}(" . ")$
Transparency	alpha $=\mathrm{I}(1 / 50)$
Jittering	geom $=$ "jitter"
Smooth curve	geom $=$ "smooth"
2d bins	geom $=$ "bin2d" or geom $=$ "hex"
Density contours	geom $=$ "density2d"

Bar charts

qplot(country, data = sample)
qplot(country, data = gshs)
qplot(hungry, data = gshs)
qplot(fruit, data = gshs)
qplot(vegetables, data = gshs)
qplot(country, data = gshs, weight = sample_weight) qplot(hungry, data = gshs, weight = sample_weight)

Additional variables

As with scatterplots can use aesthetics or faceting.

Using the fill aesthetic creates plots that are pretty, but they can be hard to read.
\# Let's try and explore the relationship between \# country and amount of fruit eaten
qplot(country, data = gshs, fill = fruit) qplot(fruit, data = gshs, fill = country)
\# Problem: different numbers in each country qplot(country, data = gshs, fill = fruit, position = "fill")
\# But not easy to compare
with(gshs, table(country, fruit, exclude = NULL)) with(gshs, table(country, fruit))
table <- with(gshs, table(country, fruit))
percent <- prop.table(table, 1)
percent_df <- as.data.frame(percent)
qplot(country, data = percent_df, fill = fruit)
qplot (country, data = percent_df, weight = Freq, fill = fruit)
qplot(fruit, data = percent_df, weight = Freq, fill = country)
qplot(fruit, Freq, data = percent_df, geom = "line", colour = country, group = country)

Summary

table: computes counts
prop. table: divides out one margin
as.data.frame: converts to data.frame (ggplot2 only works with data frames)

Your turn

How is fruit and vegetable consumption related? Always look at marginal (1d) distributions first.

Histograms

qplot(weight, data = gshs)
qplot(weight, data = gshs, binwidth = 10)
qplot(weight, data = gshs, binwidth = 5)
qplot(weight, data = gshs, binwidth = 1)
\# That's a bit suspicious looking. Let's look \# at rounding more closely.
\# \%\% is modulo operator (remainder after integer division) qplot(weight \%\% 10, data = gshs, binwidth = 1) last_plot() + facet_wrap(~ country)

$$
\begin{aligned}
& \text { Always } \\
& \text { experiment with } \\
& \text { the bin width! }
\end{aligned}
$$

Your turn

Explore the distributions of height and

 bmi. Do you find any suspicious patterns there?Experiment with geom = "freqpoly" and geom = "density"

Aside: coding strategy

At the end of each interactive session, you want a summary of everything you did. Two options:

1. Save everything you did with savehistory() then remove the unimportant bits.
2. Build up the important bits as you go. (this is how I work)

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/ 3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

