
November 2010

Hadley Wickham
Assistant Professor / Dobelman Family Junior Chair

Department of Statistics / Rice University

Data manipulation

1. Baby names data

2. Slicing and dicing

3. Merging data

4. Group-wise operations

5. Challenges

CC BY http://www.flickr.com/photos/the_light_show/2586781132

Baby names

Top 1000 male and female baby
names in the US, from 1880 to
2008.

258,000 records (1000 * 2 * 129)

But only five variables: year,
name, soundex, sex and prop.

> head(bnames, 20)

 year name soundex prop sex

1 1880 John J500 0.081541 boy

2 1880 William W450 0.080511 boy

3 1880 James J520 0.050057 boy

4 1880 Charles C642 0.045167 boy

5 1880 George G620 0.043292 boy

6 1880 Frank F652 0.027380 boy

7 1880 Joseph J210 0.022229 boy

8 1880 Thomas T520 0.021401 boy

9 1880 Henry H560 0.020641 boy

10 1880 Robert R163 0.020404 boy

11 1880 Edward E363 0.019965 boy

12 1880 Harry H600 0.018175 boy

13 1880 Walter W436 0.014822 boy

14 1880 Arthur A636 0.013504 boy

15 1880 Fred F630 0.013251 boy

16 1880 Albert A416 0.012609 boy

17 1880 Samuel S540 0.008648 boy

18 1880 David D130 0.007339 boy

19 1880 Louis L200 0.006993 boy

20 1880 Joe J000 0.006174 boy

> tail(bnames, 20)

 year name soundex prop sex

257981 2008 Miya M000 0.000130 girl

257982 2008 Rory R600 0.000130 girl

257983 2008 Desirae D260 0.000130 girl

257984 2008 Kianna K500 0.000130 girl

257985 2008 Laurel L640 0.000130 girl

257986 2008 Neveah N100 0.000130 girl

257987 2008 Amaris A562 0.000129 girl

257988 2008 Hadassah H320 0.000129 girl

257989 2008 Dania D500 0.000129 girl

257990 2008 Hailie H400 0.000129 girl

257991 2008 Jamiya J500 0.000129 girl

257992 2008 Kathy K300 0.000129 girl

257993 2008 Laylah L400 0.000129 girl

257994 2008 Riya R000 0.000129 girl

257995 2008 Diya D000 0.000128 girl

257996 2008 Carleigh C642 0.000128 girl

257997 2008 Iyana I500 0.000128 girl

257998 2008 Kenley K540 0.000127 girl

257999 2008 Sloane S450 0.000127 girl

258000 2008 Elianna E450 0.000127 girl

Getting started
library(plyr)
library(ggplot2)

options(stringsAsFactors = FALSE)
Can read compressed files directly
Don't need to unzip first
Very handy!
bnames <- read.csv("baby-names2.csv.bz2")
births <- read.csv("baby-births.csv")

Working
directories

Data (.csv)
+

Code (.r)
+

Graphics (.png, .pdf)
+

Written report (.tex)

In one directory

Set your working directory to specify where
files will be loaded from and saved to.

From the terminal (linux or mac): the
working directory is the directory you’re in
when you start R

On windows: File | Change dir.

On the mac: ⌘-D

Working directory

Coding strategy

At the end of each interactive session, you
want a summary of everything you did. Two
options:

1. Save everything you did with savehistory()
then remove the unimportant bits.

2. Build up the important bits as you go.
(this is how I work)

Trends

Your turn

Extract your name from the dataset. Plot
the trend over time.

What geom should you use? Do you
need any extra aesthetics?

hadley <- subset(bnames, name == "Hadley")

qplot(year, prop, data = hadley, colour = sex,
 geom ="line")
:(

Use the soundex variable to extract all
names that sound like yours. Plot the
trend over time.

Do you have any difficulties? Think about
grouping.

Your turn

gabi <- subset(bnames, soundex == "G164")
qplot(year, prop, data = gabi)
qplot(year, prop, data = gabi, geom = "line")

qplot(year, prop, data = gabi, geom = "line",
 colour = sex) + facet_wrap(~ name)

qplot(year, prop, data = gabi, geom = "line",
 colour = sex, group = interaction(sex, name))

year

pr
op

0.001

0.002

0.003

0.004

0.005

1880 1900 1920 1940 1960 1980 2000

sex
boy
girl

Sawtooth appearance
implies grouping is incorrect.

Slicing
and dicing

Function Package

subset base

summarise plyr

transform base

arrange plyr

They all have similar syntax. The first argument
is a data frame, and all other arguments are
interpreted in the context of that data frame.
Each returns a data frame.

subset(df, color == "blue")

color value

blue 1

black 2

blue 3

blue 4

black 5

color value

blue 1

blue 3

blue 4

transform(df, double = 2 * value)

color value

blue 1

black 2

blue 3

blue 4

black 5

color value double

blue 1 2

black 2 4

blue 3 6

blue 4 8

black 5 10

summarise(df, double = 2 * value)

color value

blue 1

black 2

blue 3

blue 4

black 5

double

2

4

6

8

10

summarise(df, total = sum(value))

color value

blue 1

black 2

blue 3

blue 4

black 5

total

15

arrange(df, color)

color value

4 1

1 2

5 3

3 4

2 5

color value

1 2

2 5

3 4

4 1

5 3

arrange(df, desc(color))

color value

4 1

1 2

5 3

3 4

2 5

color value

5 3

4 1

3 4

2 5

1 2

Your turn

Calculate the total proportion, and largest
and smallest proportions of your name.

Reorder the data frame containing your
name from highest to lowest popularity.

summarise(bnames,
 total = sum(prop),
 largest = max(prop),
 smallest = min(prop))

arrange(hadley, desc(prop))

Brainstorm

Thinking about the data, what are some
of the trends that you might want to
explore? What additional variables would
you need to create? What other data
sources might you want to use?

Pair up and brainstorm for 2 minutes.

External Internal

Biblical names
Hurricanes
Ethnicity

Famous people

First/last letter
Length
Vowels
Rank

Sounds-like

join ddply

Merging
data

Name instrument

John guitar

Paul bass

George guitar

Ringo drums

Stuart bass

Pete drums

Name band

John T

Paul T

George T

Ringo T

Brian F

+ = ?

Combining datasets

Name instrument

John guitar

Paul bass

George guitar

Ringo drums

Stuart bass

Pete drums

Name band

John T

Paul T

George T

Ringo T

Brian F

Name instrument band

John guitar T

Paul bass T

George guitar T

Ringo drums T

Stuart bass NA

Pete drums NA

join(x, y, type = "left")

x y

+ =

Name instrument

John guitar

Paul bass

George guitar

Ringo drums

Stuart bass

Pete drums

Name band

John T

Paul T

George T

Ringo T

Brian F

Name instrument band

John guitar T

Paul bass T

George guitar T

Ringo drums T

Brian NA F

join(x, y, type = "right")

x y

+ =

Name instrument

John guitar

Paul bass

George guitar

Ringo drums

Stuart bass

Pete drums

Name band

John T

Paul T

George T

Ringo T

Brian F

Name instrument band

John guitar T

Paul bass T

George guitar T

Ringo drums T

join(x, y, type = "inner")

x y

+ =

Name instrument

John guitar

Paul bass

George guitar

Ringo drums

Stuart bass

Pete drums

Name band

John T

Paul T

George T

Ringo T

Brian F

Name instrument band

John guitar T

Paul bass T

George guitar T

Ringo drums T

Stuart bass NA

Pete drums NA

Brian NA F

join(x, y, type = "full")

x y

+ =

Type Action

"left"
Include all of x, and
matching rows of y

"right"
Include all of y, and
matching rows of x

"inner"
Include only rows in

both x and y

"full" Include all rows

Your turn

Convert from proportions to absolute
numbers by combining bnames with births,
and then performing the appropriate
calculation.

bnames2 <- join(bnames, births,
 by = c("year", "sex"))
tail(bnames2)

bnames2 <- transform(bnames2, n = prop * births)
tail(bnames2)

bnames2 <- transform(bnames2,
 n = round(prop * births))
tail(bnames2)

year

bi
rth
s

500000

1000000

1500000

2000000

1880 1900 1920 1940 1960 1980 2000

sex
boy
girl

19
36

: fi
rs

t is
su

ed

19
86

: n
ee

ded
 fo

r c
hil

d

ta
x d

ed
uc

tio
n

Group-wise
operations

Number of people

How do we compute the number of
people with each name over all years? It’s
pretty easy if you have a single name.

How would you do it?

hadley <- subset(bnames2, name == "Hadley")
sum(hadley$n)

Or
summarise(hadley, n = sum(n))

But how could we do this for every name?

Split
pieces <- split(bnames2, list(bnames$name))

Apply
results <- vector("list", length(pieces))
for(i in seq_along(pieces)) {
 piece <- pieces[[i]]
 results[[i]] <- summarise(piece,
 name = name[1], n = sum(n))
}

Combine
result <- do.call("rbind", results)

Or equivalently

counts <- ddply(bnames2, "name", summarise,
 n = sum(n))

Or equivalently

counts <- ddply(bnames2, "name", summarise,
 n = sum(n))

Input data

2nd argument
to summarise()

Way to split
up input

Function to apply to
each piece

a 2

a 4

b 0

b 5

c 5

c 10

x y

x y

a 2

a 4

b 0

b 5

c 5

c 10

Split

x y

x y

3

2.5

7.5

Apply

a 2

b 2.5

c 7.5

Combine

x y

Your turn

Repeat the same operation, but use
soundex instead of name. What is the
most common sound? What name does
it correspond to?

scounts <- ddply(bnames2, "soundex", summarise,
 n = sum(n))
scounts <- arrange(scounts, desc(n))

Combine with names
When there are multiple possible matches,
join picks the first
scounts <- join(
 scounts, bnames2[, c("soundex", "name")],
 by = "soundex")
head(scounts, 100)

subset(bnames, soundex == "L600")

Transformations

What about group-wise
transformations? e.g. what if we want to
compute the rank of a name within a sex
and year?

This task is easy if we have a single year
& sex, but hard otherwise.

Transformations

How would you do it for a single group?

one <- subset(bnames, sex == "boy" & year == 2008)
one$rank <- rank(-one$prop,
 ties.method = "first")

or
one <- transform(one,
 rank = rank(-prop, ties.method = "min"))
head(one)

What if we want to transform
every sex and year?

1. Extract a single group

2. Figure out how to solve it for just that
group

3. Use ddply to solve it for all groups

Workflow

How would you use ddply to calculate all ranks?

bnames <- ddply(bnames, c("sex", "year"), transform,
 rank = rank(-prop, ties.method = "min"))

ddply + transform =
group-wise transformation

ddply + summarise =
per-group summaries

ddply + subset =
per-group subsets

Tools

You know have all the tools to solve 95%
of data manipulation problems in R. It’s
just a matter of figuring out which tools to
use, and how to combine them.

The following challenges will give you
some practice.

More plyr
functions

Many problems involve splitting up a large
data structure, operating on each piece
and joining the results back together:

split-apply-combine

How you split up depends on the type of
input: arrays, data frames, lists

How you combine depends on the type of
output: arrays, data frames, lists,
nothing

array data frame list nothing

array

data frame

list

n replicates

function
arguments

aaply adply alply a_ply

daply ddply dlply d_ply

laply ldply llply l_ply

raply rdply rlply r_ply

maply mdply mlply m_ply

array data frame list nothing

array

data frame

list

n replicates

function
arguments

apply adply alply a_ply

daply aggregate by d_ply

sapply ldply lapply l_ply

replicate rdply replicate r_ply

mapply mdply mapply m_ply

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United
States License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

