
Hadley Wickham

plyr
Wrap up



1. Fitting multiple models to the same 
data

2. Reporting progress & dealing with 
errors

3. Overall structure & correspondence to 
base R functions

4. Plans

5. Feedback



May need to fit multiple models to the 
same data, with varying parameters or 
many random starts.

Two plyr functions make this easy: rlply 
& mlply

Example: fitting a neural network

Multiple models



x

y

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

● ●
● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

class
● A
● B



library(nnet)
library(ggplot2)

w <- read.csv("wiggly.csv")
qplot(x, y, data = w, colour = class)

accuracy <- function(mod, true) {
  pred <- factor(predict(mod, type = "class"), 
    levels = levels(true))
  tb <- table(pred, true)
  sum(diag(tb)) / sum(tb)
}

nnet(class ~ x + y, data = w, size = 3)



A little different to the other plyr functions: 
first argument is number of times to run, 
second argument is an expression (not a 
function).

Automatically adds run number (.n) to 
labels.

rlply



models <- rlply(50, nnet(class ~ x + y, data = w, 
size = 3, trace = FALSE))

accdf <- ldply(models, "accuracy", true = w$class)
accdf
qplot(accuracy, data = accdf, binwith = 0.02)



What if we want to systematically vary the 
input parameters?

mlply allows us to vary all of the 
arguments to the applicator function, not 
just the first argument

Input is a data frame of parameter values

mlply



wiggly_nnet <- function(...) {
  nnet(class ~ x + y, data = w, trace = FALSE, ...)
}
rlply(5, wiggly_nnet(size = 3))

# Unfortunately need 2+ parameters because of bug
opts <- data.frame(size = 1:10, maxiter = 50)
opts

models <- mlply(opts, wiggly_nnet)
ldply(models, "accuracy", true = w$class)

# expand.grid() useful if you want to explore
# all combinations



Progress & errors



Progress bars

Things seem to take much less time when 
you are regularly updated on their 
progress.

Plyr provides convenient method for 
doing this: all arguments 
accept .progress = "text" argument



Error handling

Helper function: failwith

Takes a function as an input and returns a 
function as output, but instead of 
throwing an error it will return the value 
you specify.

failwith(NULL, lm)(cty ~ displ, data = mpg)

failwith(NULL, lm)(cty ~ displ, data = NULL)



Overall structure



array data frame list nothing

array

data frame

list

n replicates

function 
arguments

aaply adply alply a_ply

daply ddply dlply d_ply

laply ldply llply l_ply

raply rdply rlply r_ply

maply mdply mlply m_ply



No output

Useful for functions called purely for their 
side effects: write.table, save, graphics.

If .print = TRUE will print each result 
(particularly useful lattice and ggplot2 graphics)



Your turn

With your partner, using your collective R 
knowledge, come up with all of the 
functions in base R (or contributed 
packages) that do the same thing.



array data frame list nothing

array

data frame

list

n replicates

function 
arguments

apply adply alply a_ply

daply aggregate by d_ply

sapply ldply lapply l_ply

replicate rdply replicate r_ply

mapply mdply mapply m_ply



Plans

Deal better with large and larger data: 
trivial parallelisation & on-disk data (sql 
etc)

Stay tuned for details.



http://hadley.wufoo.com/
forms/course-evaluation/


