

Hadley Wickham

1. Introduction to the data
2. Transformations and summaries
3. Group-wise transformation and summary
4. Variable selection syntax
5. Challenge

Baby names

Top 1000 male and female baby names in the US, from 1880 to 2008.

258,000 records (1000 * 2 * 129)
But only four variables: year, name, sex and percent.
> head(bnames, 15)

	year	name percent sex
1	1880	John 0.081541 boy
2	1880	William 0.080511 boy
3	1880	James 0.050057 boy
4	1880	Charles 0.045167 boy
5	1880	George 0.043292 boy
6	1880	Frank 0.027380 boy
7	1880	Joseph 0.022229 boy
8	1880	Thomas 0.021401 boy
9	1880	Henry 0.020641 boy
10	1880	Robert 0.020404 boy
11	1880	Edward 0.019965 boy
12	1880	Harry 0.018175 boy
13	1880	Walter 0.014822 boy
14	1880	Arthur 0.013504 boy
15	1880	Fred 0.013251 boy

> tail(bnames, 15)

	year	name	t
257986	2008	N	30 girl
257987	2008	Amar	0.000129 girl
257988	2008	H	9
257989	2008	Da	0.000129
257990	2008	Ha	0.000129
257	2008	Jam	9
257992	2008	K	9
257993	2008	Lay	0.000129
257994	2008	Riya	0.000129 girl
257995	2008	Di	0.000128 girl
257996	2008	Carle	28
257997	2008	Iy	0.000128
257998	2008	Kenley	0.000127 girl
257999	2008	Sloane	0.000127 girl
258000	2008	Elianna	0.000127 girl

Brainstorm

What variables and summaries might you want to generate from this data? What questions would you like to be able to answer about the data?

With your partner, you have 2 minutes to come up with as many as possible.

Some of my ideas

- First/last letter
- Length
- Number/percent of vowels
- Biblical names?
- Rank
- Ecdf (how many babies have a name in the top 2, 3, 5, 100 etc)

Transform \& summarise

transform(df, var1 = expr1, ...)
summarise(df, var1 = expr1, ...)

Transform modifies an existing data frame. Summarise creates a new data frame.

```
letter <- function(x, n = 1) {
    if (n < 0) {
        nc <- nchar(x)
        n <- nc + n + 1
    }
    tolower(substr(x, n, n))
}
vowels <- function(x) {
    nchar(gsub("[^aeiou]", "", x))
}
bnames <- transform(bnames,
    first = letter(name, 1),
    last = letter(name, -1),
    length = nchar(name),
    vowels = vowels(name)
)
summarise(bnames,
    max_perc = max(percent),
    min_perc = min(percent))
```


Many interesting transformations and summaries can be calculated for the whole dataset

Group-wise

What about group-wise transformations or summaries? e.g. what if we want to compute the rank of a name within a sex and year?

This task is easy if we have a single year \& sex, but hard otherwise.
one <- subset(bnames, sex == "boy" \& year == 2008) one\$rank <- rank(-one\$percent, ties.method = "first")
\# or
one <- transform(one,
rank = rank(-percent, ties.method = "first"))
head(one)

What if we want to transform every sex and year?

```
# Split
pieces <- split(bnames,
                                list(bnames$sex, bnames$year))
# Apply
results <- vector("list", length(pieces))
for(i in seq_along(pieces)) {
    piece <- pieces[[i]]
    piece <- transform(piece,
                            rank = rank(-percent, ties.method = "first"))
    results[[i]] <- piece
}
```

\# Combine result <- do.call("rbind", results)
\# Or equivalently
bnames <- ddply(bnames, c("sex", "year"), transform, rank $=$ rank(-percent, ties.method = "first"))

bnames <- ddply(bnames, c("sex", "year"), transform, rank = rank(-percent, ties.method = "first"))

to transform()

ddply

- . data: data frame to process
- . variables: combination of variables to split by
- . fun: function to call on each piece
- . . . : extra arguments passed to .fun

Variable specification syntax

- Character: c("sex", "year")
- Numeric: 1:3
- Formula: ~ sex + year
- Special:
- . (sex, year)
- .(first $=$ letter(name, 1))

Match function with use

scale(x)	randomisation/permutation tests
$\operatorname{rank}(x)$	scale to [0, 1] within each group
$x-\min (x) /$ diff(range(x))	scale to mean 0, sd 1 within each group
$x / x[1]$	compute per-group rankings
$\operatorname{sample}(x)$	index a time series

Summaries

In a similar way, we can use ddply () for group-wise summaries.

There are many base R functions for special cases. Where available, these are often much faster; but you have to know they exist, and have to remember how to use them.
ddply(bnames, c("name"), summarise, tot $=$ sum(percent))
ddply(bnames, c("length"), summarise, tot $=$ sum(percent))
ddply(bnames, c("year", "sex"), summarise, tot $=$ sum(percent))
fl <- ddply(bnames, c("year", "sex", "first"), summarise, tot = sum(percent))
library (ggplot2) qplot(year, tot, data = fl, geom = "line", colour $=$ sex, facets $=\sim$ first)

Challenge

Create a plot that shows (by year) the proportion of US children who have a name in the top 100.

Extra challenge: break it down by sex.
What does this suggest about baby naming trends in the US?

