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1. Strategy for analysing large data.

2. Introduction to the Texas housing
data.

3. What’s happening in Houston?

4.Using a models as a tool

5. Using models in their own right




Large data strategy

Start with a single unit, and identify
Interesting patterns.

Summarise patterns with a model.
Apply model to all units.
Look for units that don’t fit the pattern.

Summarise with a single model.




Texas houstg d?ta

/

For each metropolitan area (45) in [lexas,
for each month from 2000 to 2009{(112):

Number of houses listed and sold

Total value of houses, and averagejsale
price

Average time on market
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Strategy

Start with a single city (Houston).

Explore patterns & fit models.

Apply models to all cities.
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Seasonal trends

Make it much harder to see long term
trend. How can we remove the trend?

(Many sophisticated techniques from time

series, but what’s the simplest thing that
might work?)
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Challenge

What does the following function do?

deseas <- function(var, month) {

resid(lm(var ~ factor(month))) +

mean(var, na.rm = TRUE)
J

How could you use it in conjunction with
transform to deasonalise the data? What if
you wanted to deasonalise every city?
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houston <- transform(houston,
avgprice_ds = deseas(avgprice, month),
listings_ds = deseas(listings, month),
sales_ds = deseas(sales, month),
onmarket_ds = deseas(onmarket, month)

gplot(month, sales_ds, data = houston,
geom = "line"”, group = year) + avg
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Model as tools

Here we’re using the linear model as a
tool - we don’t care about the coefficients
or the standard errors, just using it to get
rid of a striking pattern.

Tukey described this pattern as residuals
and reiteration: by removing a striking
pattern we can see more subtle patterns.
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Summary

Most variables seem to be combination of
strong seasonal pattern plus weaker long-

term trend.

How do these patterns hold up for the
rest of Texas? We’ll focus on sales.
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tx <- read.csv("tx-house-sales.csv")
gplot(date, sales, data = tx, geom = "line”,
group = city)

tx <- ddply(tx, "city"”, transform,
sales_ds = deseas(sales, month))

gplot(date, sales_ds, data = tx, geom = "line”,
group = city)
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Tuesday, 7 July 2009



It works, but...

It doesn’t give us any insight into the
similarity of the patterns across multiple
cities. Are the trends the same or
different?

So instead of throwing the models away
and just using the residuals, let’s keep the
models and explore them in more depth.




Two new tools

dlply: takes a data frame, splits up in the
same way as ddply, applies function to

each piece and combines the results into a
list

ldply: takes a list, splits up into elements,

applies function to each piece and ther
combines the results into a data frame

dlply + ldply = ddply
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models <- dlply(tx, "city"”, function(df)
Im(sales ~ factor(month), data = df))

models[[1]]
coef(models[[11])

ldply(models, coef)
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Labelling

Notice we didn’t have to do anything to
have the coefficients labelled correctly.

Behind the scenes plyr records the labels
used for the split step, and ensures they
are preserved across multiple plyr calls.




Back to the model

What are some problems with this model?
How could you fix them?

Is the format of the coefficients optimal?

Turn to the person next to you and
discuss for 2 minutes.




gplot(date, logld(sales), data = tx, geom = "line”,
group = city)

models?2 <- dlply(tx, "city”, function(df)
Im(logl@(sales) ~ factor(month), data = df))

coef?2 <- ldply(models2, function(mod) {
data.frame(
month = 1:12,
effect = ¢c(0, coef(mod)[-1]),
intercept = coef(mod)[1])

})
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gplot(date, logl@(sales), data = tx, geom = "line”,
group = city) /N N
Log transform sales to

make coefficients :
models2 <- dlr comparable (ratios) ction(df)

1m(10g1®(safésy—”—rattcrrmcntﬁ), data = df))

coef?2 <- ldply(models2, function(mod) {
data.frame(
month = 1:12,
effect = ¢c(@, coef(mod)[-1]),
intercept = coef(mod)[1])

})

Puts coefficients in
rows, so they can be
_ plotted more easily
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coef2, group = city, geom = "line")

gplot(month, effect, data
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gplot(month, 10 * effect, data = coef2, groub = city, geom = "line")
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gplot(month, 10 * effect, data = coef?2, geom_: "line") + facet_wrap(~ city)
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What should
we do next?

What do you think?

You have 30 seconds to come up with (at
least) one idea.




My Ideas

Fit a single model, log(sales) ~ city *
factor(month), and look at residuals

Fit individual models, log(sales) ~
factor(month) + ns(date, 3), look cities
that don’t fit




# One approach - fit a single model

mod <- 1m(logl@(sales) ~ city + factor(month),
data = tx)

tx$sales?2 <- 10 * resid(mod)

gplot(date, sales?2, data = tx, geom = "line",
group = city)

last_plot() + facet_wrap(~ city)
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sales2

gplot(date, sales2, data = tx, geom

”1ineb, group = city)
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last_plot() + facet_wrap(~ city)
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# Another approach: Essence of most cities is seasonal

# term plus long term smooth trend. We could fit this

# model to each city, and then look for models which don't
# fit well.

library(splines)
models3 <- dlply(tx, "city”, function(df) {
Im(logl@(sales) ~ factor(month) + ns(date, 3), data = df)

)

# Extract rsquared from each model

rsq <- function(mod) c(rsq = summary(mod)$r.squared)
quality <- ldply(models3, rsq)
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gplot(rsq,
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quality$poor <- quality$rsqg < 0.7
tx2 <- merge(tx, quality, by = "city")

mfit <- ldply(models3, function(mod) {
data.frame(
resid = resid(mod),
pred = predict(mod))
})
tx2 <- cbind(tx2, mfit[, -11)

A \

Can you think of any potential

problems with this line?
- Y,
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Conclusions

Simple (and relatively small) example, but
shows how collections of models can be
useful for gaining understanding.

Each attempt illustrated something new
about the data.

Plyr made it easy to create and summarise
collection of models, so we didn’t have to
worry about the mechanics.
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