Polishing your plots

Hadley Wickham October 2009

Thursday, 22 October 2009

Polishing

Most (99%?) of your plots don't need any polishing. They are **exploratory** plots, produced to help you understand the data.

When you need to **communicate** your findings, you need to spend time polishing your plots to eliminate distractions and focus on the story you want to tell.

Saving your work
 Colour
 Labels & ticks
 Themes

Saving your work

```
# Classical approach
# If you're doing this inside a loop or function
# you'll need to explicitly print the plot
png("diamonds.png", width = 6, height = 6)
qplot(price, carat, data = diamonds)
dev.off()
```

```
# ggsave
qplot(price, carat, data = diamonds)
ggsave("diamonds.png")
```

Selects graphics device based on extension
ggsave("diamonds.png")
ggsave("diamonds.pdf")

Uses on-screen device size, or override with # width & height (to be reproducible) ggsave("diamonds.png", width = 6, height = 6)

Outputs last plot by default, override # with plot: dplot <- qplot(carat, price, data = diamonds) ggsave("diamonds.png", plot = dplot)

```
# Defaults to 300 dpi for png
ggsave("diamonds.png", dpi = 72)
```

Raster	Vector
pixel-based	instruction-based
png	pdf, wmf, eps
for plots with many points	for all other plots
ms office, web	latex

Your turn

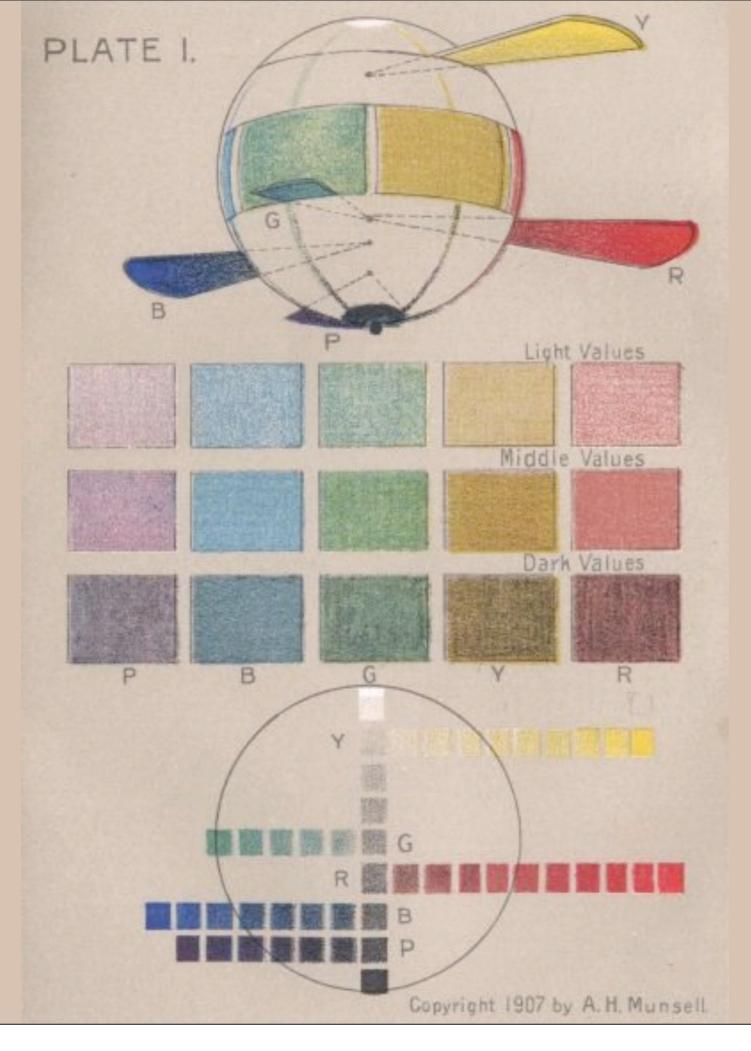
Save a pdf of a scatterplot of price vs carat. Open it up in adobe acrobat.

Save a png of the same scatterplot and embed it into a word or latex document.

Colour

Colour theory

Colour most important aesthetic after position. Need to know a little theory to be able to use it effectively.


Colour spaces & colour blindness.

Colour spaces

Probably most familiar with rgb: defines colour as mixture of red, green and blue. Matches physics of eye.

Brain does quite a lot of post-processing, so hard to directly perceive amount of red, green and blue.

A more useful colour space is hcl: hue, chroma (intensity) and luminance (lightness)

HCL in 3d

Colour scales

Discrete: evenly spaced hues of equal chroma and luminance. No colour appears more important than any other. Does not imply order.

Continuous: evenly spaced hues between two colours.

Munsell package to makes it easy to select matched colours.

library(munsell)

hue_slice()
hue_slice("5R")
chroma_slice("6")
value_slice("7")

Color brewer

http://colorbrewer2.org/

Cynthia Brewer applied many of these principles to come up with a selection of good palettes (particularly tailored for maps).

Use cut_interval() or cut_number() to convert continuous to categorical

vals <- seq(-4 * pi, 4 * pi, len = 50)
df <- expand.grid(x = vals, y = vals)
df\$r <- with(df, sqrt(x ^ 2 + y ^ 2))
df\$z <- with(df, cos(r ^ 2) * exp(- r / 6))
df\$z_cut <- cut_interval(df\$z, 9)</pre>

p1 + scale_fill_gradient(low = "white", high = "black")

```
# Highlight deviations
p1 + scale_fill_gradient2()
p1 + scale_fill_gradient2(breaks = seq(-1, 1,
    by = 0.25), limits = c(-1, 1))
p1 + scale_fill_gradient2(mid = "white",
    low = "black", high = "black")
```

p2 + scale_fill_brewer(pal = "Blues")

Colour blindness

7-10% of men are red-green colour"blind". (Many other rarer types of colour blindness)

Solutions: avoid red-green contrasts; use redundant mappings; **test**. I like color oracle: http://colororacle.cartography.ch

Your turn

Look up a diverging colorbrewer scale and use that instead.

Use http://www.vischeck.com/vischeck/ to check the colour schemes we've been using.

Other resources

A. Zeileis, K. Hornik, and P. Murrell. Escaping RGBland: Selecting colors for statistical graphics. Computational Statistics & Data Analysis, 2008.

http://statmath.wu-wien.ac.at/~zeileis/papers/ Zeileis+Hornik+Murrell-2008.pdf.

Labels & ticks

Overview

All display aspect of legends and axes controlled by the scales.

To modify axes & legend titles, tick marks and legend keys, you need to modify parameters of the scales: **name**, **breaks**, **labels**.

```
# Labels
scale_x_continuous("My new x")
# All techniques in plotmath also work
scale_x_continuous(expression(x ^ alpha))
# Similarly for colour
scale_colour_discrete("Colour scale")
```

```
# Short cuts:
xlab("My new x")
xlab(expression(x ^ alpha))
labs(colour = "Colour scale")
```

```
qplot(carat, price, data = diamonds)
qplot(carat, price, data = diamonds) +
    scale_x_log10() +
    scale_y_log10()
```

```
prices <- c(100, 500, 1000, 5000, 10000)
last_plot() +
    scale_y_log10(breaks = prices)</pre>
```

last_plot() +
 scale_y_log10(breaks = prices, labels = prices)

Your turn

Also improve the scale for the x axis. Use geom = "hexbin" and adjust the keys and labels on the colour legend.

Themes

Visual appearance

So far have only discussed how to get the data displayed the way you want, focussing on the essence of the plot.

Themes give you a huge amount of control over the appearance of the plot, the choice of background colours, fonts and so on. # Two built in themes. The default: qplot(carat, price, data = diamonds)

And a theme with a white background: qplot(carat, price, data = diamonds) + theme_bw()

Use theme_set if you want it to apply to every # future plot. theme_set(theme_bw())

theme_bw()
theme_grey()

Elements

You can also make your own theme, or modify and existing.

Themes are made up of elements which can be one of: theme_line, theme_segment, theme_text, theme_rect, theme_blank

Gives you a lot of control over plot appearance.

Elements

Axis: axis.line, axis.text.x, axis.text.y, axis.ticks, axis.title.x, axis.title.y

Legend: legend.background, legend.key, legend.text, legend.title

Panel: panel.background, panel.border, panel.grid.major, panel.grid.minor

Strip: strip.background, strip.text.x, strip.text.y

- p <- qplot(displ, hwy, data = mpg) +
 opts(title = "Bigger engines are less efficient")</pre>
- # To modify a plot

```
р
```

- p + opts(plot.title =
 theme_text(size = 12, face = "bold"))
 p + opts(plot.title = theme_text(colour = "red"))
 p + opts(plot.title = theme_text(angle = 45))
- p + opts(plot.title = theme_text(hjust = 1))

Your turn

Fix the overlapping y labels on this plot: qplot(reorder(model, hwy), hwy, data = mpg)

Rotate the labels on these strips so they are easier to read.

qplot(hwy, reorder(model, hwy), data =
mpg) + facet_grid(manufacturer ~ .,
scales = "free", space = "free")

This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/ 3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.