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Subsetting
Key to efficient use of R is 

mastering subsetting. 
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Subsetting
Key to efficient use of R is 

mastering subsetting. 

Take one minute to recall the 5 
basic types of subsetting
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logical

blank

integer

character

+ve: include
-ve: exclude

lookup by name

include TRUEs

include all
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Integer subsetting
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# Nothing
str(diamonds[, ])

# Positive integers & nothing
diamonds[1:6, ]  # same as head(diamonds)
diamonds[, 1:4]  # watch out!

# Two positive integers in rows & columns
diamonds[1:10, 1:4]

# Repeating input repeats output
diamonds[c(1,1,1,2,2), 1:4]

# Negative integers drop values
diamonds[-(1:53900), -1]
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# Useful technique: Order by one or more columns
diamonds[order(diamonds$x), ]

# Useful technique: Combine two tables
carats <- data.frame(table(carat = diamonds$carat))
mtch <- match(diamonds$carats, carats$carats)
diamonds$carat_count <- carats$Freq[mtch]
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Logical subsetting
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# The most complicated to understand, but 
# the most powerful. Lets you extract a 
# subset defined by some characteristic of 
# the data
x_big <- diamonds$x > 10

head(x_big)
sum(x_big)
mean(x_big)
table(x_big)

diamonds$x[x_big]
diamonds[x_big, ]
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small <- diamonds[diamonds$carat < 1, ]
lowqual <- diamonds[diamonds$clarity 
  %in% c("I1", "SI2", "SI1"), ]

# Comparison functions:
# < > <= >= != == %in%

# Boolean operators: & | !
small <- diamonds$carat < 1 & 
  diamonds$price > 500
lowqual <- diamonds$colour == "D" | 
  diamonds$cut == "Fair"
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Select the diamonds that have:

Equal x and y dimensions.

Depth between 55 and 70.

Carat smaller than the mean.

Cost more than $10,000 per carat.

Are of good quality or better.

Your turn
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A a

B b

A | B union(a, b)

A & B intersect(a, b)

A & !B setdiff(a, b)
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A a

B b

A | B union(a, b)

A & B intersect(a, b)

A & !B setdiff(a, b)
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a <- seq(0, 100, by = 2)
b <- seq(0, 100, by = 3)

intersect(a, b)  # divisible by 2 and 3
union(a, b)      # divisible by 2 or 3
setdiff(a, b)    # divisible by 2, but not 3
setdiff(b, a)    # divisible by 3, but not 2
setdiff(union(a, b), intersect(a, b))  
# divisible by either, but not both

Easy to 

select first n
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A <- rep(c(F, T), length = 100)
B <- rep(c(F, F, T), length = 100)

A & B     # divisible by 2 and 3
A | B     # divisible by 2 or 3 
A & !B    # divisible by 2, but not 3
B & !A    # divisible by 3, but not 2
xor(A, B) # divisible by either, but not both
(A | B) & !(A & B)  # same thing

which() converts 

from
 logical to num

eric
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Character subsetting
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# Matches by names
diamonds[1:5, c("carat", "cut", "color")]

# Useful technique: change labelling
c("Fair" = "C", "Good" = "B", "Very Good" = "B+", 
"Premium" = "A", "Ideal" = "A+")[diamonds$cut]

# Can also be used to collapse levels
table(c("Fair" = "C", "Good" = "B", "Very Good" = 
"B", "Premium" = "A", "Ideal" = "A")[diamonds$cut])

# (see ?cut for continuous to discrete equivalent)
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In the mpg dataset, create a new variable 
giving the origin of the manufacturer: 
Europe, America or Asia.

Your turn
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Data structures
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Data structures

Take two minutes to come up with 
the 5 basic data structures
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Vector

Matrix

Array

List

Data frame

1d

2d

nd

Same types Different types
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str()
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character

numeric

logical

mode()

length() A scalar is a vector of length 1

as.character(c(T, F))

as.character(seq_len(5))

as.logical(c(0, 1, 100))

as.logical(c("T", "F", "a"))

as.numeric(c("A", "100"))

as.numeric(c(T, F))

When vectors of 
different types occur 
in an expression, 
they will be 
automatically 
coerced to the same 
type: character > 
numeric > logical

names() Optional, but useful

Technically, these are all atomic vectors
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Your turn

Experiment with automatic coercion.  
What is happening in the following cases?

104 & 2 < 4

mean(diamonds$cut == "Good")

diamonds$color == "D" | "E" | "F"
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Matrix (2d)
Array (>2d)

a <- seq_len(12)

dim(a) <- c(1, 12)

dim(a) <- c(4, 3)

dim(a) <- c(2, 6)

dim(a) <- c(3, 2, 2)

a <- 1:10

b <- 11:20

cbind(a, b)

rbind(a, b)

Just like a vector.  Has 
mode() and length().

Create with matrix() or 
array(), or from a vector 
by setting dim()

as.vector() converts 
back to a vector
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# What's the difference between a & b?

a <- matrix(x, 4, 3)

b <- array(x, c(4, 3))

# What's the difference between x & y

y <- matrix(x, 12)
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List
Is also a vector (so has 
mode, length and names), 
but is different in that it can 
store any other vector inside 
it (including lists).

Use unlist() to convert to 
a vector.  Use as.list() to 
convert a vector to a list.

c(1, 2, c(3, 4))

list(1, 2, list(3, 4))

c("a", T, 1:3)

list("a", T, 1:3)

a <- list(1:3, 1:5)

unlist(a)

as.list(a)

b <- list(1:3, "a", "b")

unlist(b)

Technically a recursive vector
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Data frame

List of vectors, each of the 
same length. (Cross 
between list and matrix)

Different to matrix in that 
each column can have a 
different type

data.frame(

  a = 1:10,

  b = letters[1:10]

)
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load(url("http://had.co.nz/stat405/data/quiz.rdata"))

# What is a?  What is b?  

# How are they different?  How are they similar?

# How can you turn a in to b?

# How can you turn b in to a?

# What are c, d, and e?  

# How are they different?  How are they similar?

# How can you turn one into another?

# What is f?

# How can you extract the first element?

# How can you extract the first value in the first 

# element? 
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# a is numeric vector, containing the numbers 1 to 10
# b is a list of numeric scalars
# they contain the same values, but in a different format
identical(a[1], b[[1]])
identical(a, unlist(b))
identical(b, as.list(a))

# c is a named list
# d is a data.frame
# e is a numeric matrix
# From most to least general: c, d, e
identical(c, as.list(d))
identical(d, as.data.frame(c))
identical(e, data.matrix(d))
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# f is a list of matrices of different dimensions

f[[1]]
f[[1]][1, 2]
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1d names() length() c()

2d
colnames()
rownames()

ncol()
nrow()

cbind()
rbind()

nd dimnames() dim() abind()
(special package)
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# What does these subsetting operations do?  

# Why do they work?  (Remember to use str)

diamonds[1]

diamonds[[1]]

diamonds["cut"]

diamonds[["cut"]]

diamonds$cut

# How are these subsetting operations different?

a <- matrix(1:12, 4, 3)

a[, 1]

a[, 1, drop = FALSE]

a[1, ]

a[1, , drop = FALSE]
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Vectors x[1:4] —

Matrices
Arrays

x[1:4, ]
x[, 2:3, ]

x[1:4, , 
drop = F]

Lists
x[[1]]
x$name

x[1]
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