
October 2009
Hadley Wickham

Subsetting &
data structures

Thursday, 22 October 2009

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

1. Subsetting

2. Data structures

1. Basic data types

2. Vectors, matrices & arrays

3. Lists & data.frames

Thursday, 22 October 2009

Subsetting
Key to efficient use of R is

mastering subsetting.

Thursday, 22 October 2009

Subsetting
Key to efficient use of R is

mastering subsetting.

Take one minute to recall the 5
basic types of subsetting

Thursday, 22 October 2009

logical

blank

integer

character

+ve: include
-ve: exclude

lookup by name

include TRUEs

include all

Thursday, 22 October 2009

Integer subsetting

Thursday, 22 October 2009

Nothing
str(diamonds[,])

Positive integers & nothing
diamonds[1:6,] # same as head(diamonds)
diamonds[, 1:4] # watch out!

Two positive integers in rows & columns
diamonds[1:10, 1:4]

Repeating input repeats output
diamonds[c(1,1,1,2,2), 1:4]

Negative integers drop values
diamonds[-(1:53900), -1]

Thursday, 22 October 2009

Useful technique: Order by one or more columns
diamonds[order(diamonds$x),]

Useful technique: Combine two tables
carats <- data.frame(table(carat = diamonds$carat))
mtch <- match(diamonds$carats, carats$carats)
diamonds$carat_count <- carats$Freq[mtch]

Thursday, 22 October 2009

Logical subsetting

Thursday, 22 October 2009

The most complicated to understand, but
the most powerful. Lets you extract a
subset defined by some characteristic of
the data
x_big <- diamonds$x > 10

head(x_big)
sum(x_big)
mean(x_big)
table(x_big)

diamonds$x[x_big]
diamonds[x_big,]

Thursday, 22 October 2009

small <- diamonds[diamonds$carat < 1,]
lowqual <- diamonds[diamonds$clarity
 %in% c("I1", "SI2", "SI1"),]

Comparison functions:
< > <= >= != == %in%

Boolean operators: & | !
small <- diamonds$carat < 1 &
 diamonds$price > 500
lowqual <- diamonds$colour == "D" |
 diamonds$cut == "Fair"

Thursday, 22 October 2009

Select the diamonds that have:

Equal x and y dimensions.

Depth between 55 and 70.

Carat smaller than the mean.

Cost more than $10,000 per carat.

Are of good quality or better.

Your turn

Thursday, 22 October 2009

A a

B b

A | B union(a, b)

A & B intersect(a, b)

A & !B setdiff(a, b)

Thursday, 22 October 2009

A a

B b

A | B union(a, b)

A & B intersect(a, b)

A & !B setdiff(a, b)

Thursday, 22 October 2009

a <- seq(0, 100, by = 2)
b <- seq(0, 100, by = 3)

intersect(a, b) # divisible by 2 and 3
union(a, b) # divisible by 2 or 3
setdiff(a, b) # divisible by 2, but not 3
setdiff(b, a) # divisible by 3, but not 2
setdiff(union(a, b), intersect(a, b))
divisible by either, but not both

Easy to

select first n

Thursday, 22 October 2009

A <- rep(c(F, T), length = 100)
B <- rep(c(F, F, T), length = 100)

A & B # divisible by 2 and 3
A | B # divisible by 2 or 3
A & !B # divisible by 2, but not 3
B & !A # divisible by 3, but not 2
xor(A, B) # divisible by either, but not both
(A | B) & !(A & B) # same thing

which() converts

from
 logical to num

eric

Thursday, 22 October 2009

Character subsetting

Thursday, 22 October 2009

Matches by names
diamonds[1:5, c("carat", "cut", "color")]

Useful technique: change labelling
c("Fair" = "C", "Good" = "B", "Very Good" = "B+",
"Premium" = "A", "Ideal" = "A+")[diamonds$cut]

Can also be used to collapse levels
table(c("Fair" = "C", "Good" = "B", "Very Good" =
"B", "Premium" = "A", "Ideal" = "A")[diamonds$cut])

(see ?cut for continuous to discrete equivalent)

Thursday, 22 October 2009

In the mpg dataset, create a new variable
giving the origin of the manufacturer:
Europe, America or Asia.

Your turn

Thursday, 22 October 2009

Data structures

Thursday, 22 October 2009

Data structures

Take two minutes to come up with
the 5 basic data structures

Thursday, 22 October 2009

Vector

Matrix

Array

List

Data frame

1d

2d

nd

Same types Different types

Thursday, 22 October 2009

str()
Thursday, 22 October 2009

character

numeric

logical

mode()

length() A scalar is a vector of length 1

as.character(c(T, F))

as.character(seq_len(5))

as.logical(c(0, 1, 100))

as.logical(c("T", "F", "a"))

as.numeric(c("A", "100"))

as.numeric(c(T, F))

When vectors of
different types occur
in an expression,
they will be
automatically
coerced to the same
type: character >
numeric > logical

names() Optional, but useful

Technically, these are all atomic vectors
Thursday, 22 October 2009

Your turn

Experiment with automatic coercion.
What is happening in the following cases?

104 & 2 < 4

mean(diamonds$cut == "Good")

diamonds$color == "D" | "E" | "F"

Thursday, 22 October 2009

Matrix (2d)
Array (>2d)

a <- seq_len(12)

dim(a) <- c(1, 12)

dim(a) <- c(4, 3)

dim(a) <- c(2, 6)

dim(a) <- c(3, 2, 2)

a <- 1:10

b <- 11:20

cbind(a, b)

rbind(a, b)

Just like a vector. Has
mode() and length().

Create with matrix() or
array(), or from a vector
by setting dim()

as.vector() converts
back to a vector

Thursday, 22 October 2009

What's the difference between a & b?

a <- matrix(x, 4, 3)

b <- array(x, c(4, 3))

What's the difference between x & y

y <- matrix(x, 12)

Thursday, 22 October 2009

List
Is also a vector (so has
mode, length and names),
but is different in that it can
store any other vector inside
it (including lists).

Use unlist() to convert to
a vector. Use as.list() to
convert a vector to a list.

c(1, 2, c(3, 4))

list(1, 2, list(3, 4))

c("a", T, 1:3)

list("a", T, 1:3)

a <- list(1:3, 1:5)

unlist(a)

as.list(a)

b <- list(1:3, "a", "b")

unlist(b)

Technically a recursive vector
Thursday, 22 October 2009

Data frame

List of vectors, each of the
same length. (Cross
between list and matrix)

Different to matrix in that
each column can have a
different type

data.frame(

 a = 1:10,

 b = letters[1:10]

)

Thursday, 22 October 2009

load(url("http://had.co.nz/stat405/data/quiz.rdata"))

What is a? What is b?

How are they different? How are they similar?

How can you turn a in to b?

How can you turn b in to a?

What are c, d, and e?

How are they different? How are they similar?

How can you turn one into another?

What is f?

How can you extract the first element?

How can you extract the first value in the first

element?

Thursday, 22 October 2009

http://had.co.nz/stat405/data/quiz.rdata
http://had.co.nz/stat405/data/quiz.rdata

a is numeric vector, containing the numbers 1 to 10
b is a list of numeric scalars
they contain the same values, but in a different format
identical(a[1], b[[1]])
identical(a, unlist(b))
identical(b, as.list(a))

c is a named list
d is a data.frame
e is a numeric matrix
From most to least general: c, d, e
identical(c, as.list(d))
identical(d, as.data.frame(c))
identical(e, data.matrix(d))

Thursday, 22 October 2009

f is a list of matrices of different dimensions

f[[1]]
f[[1]][1, 2]

Thursday, 22 October 2009

1d names() length() c()

2d
colnames()
rownames()

ncol()
nrow()

cbind()
rbind()

nd dimnames() dim() abind()
(special package)

Thursday, 22 October 2009

What does these subsetting operations do?

Why do they work? (Remember to use str)

diamonds[1]

diamonds[[1]]

diamonds["cut"]

diamonds[["cut"]]

diamonds$cut

How are these subsetting operations different?

a <- matrix(1:12, 4, 3)

a[, 1]

a[, 1, drop = FALSE]

a[1,]

a[1, , drop = FALSE]

Thursday, 22 October 2009

Vectors x[1:4] —

Matrices
Arrays

x[1:4,]
x[, 2:3,]

x[1:4, ,
drop = F]

Lists
x[[1]]
x$name

x[1]

Thursday, 22 October 2009

Thursday, 22 October 2009

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United
States License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

Thursday, 22 October 2009

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

